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Abstract. In this paper the implementation of the SVD{updating algorithm using orthonormal �{
rotations is presented. An orthonormal �{rotation is a rotation by an angle of a given set of �{rotation
angles (e.g. the angles �i = arctan2�i) which are choosen such that the rotation can be implemented by
a small amount of shift{add operations. A version of the SVD{updating algorithm is used where all com-
putations are entirely based on the evaluation and application of orthonormal rotations. Therefore, in this
form the SVD{updating algorithm is amenable to an implementation using orthonormal �{rotations, i.e.,
each rotation executed in the SVD{updating algorithmwill be approximated by orthonormal �{rotations.
For all the approximations the same accuracy is used, i.e., only r � w (w: wordlength) orthonormal �{
rotations are used to approximate the exact rotation. The rotation evaluation can also be performed by
the execution of �{rotations such that the complete SVD{updating algorithm can be expressed in terms
of orthonormal �{rotations. Simulations show the e�ciency of the SVD{updating algorithm based on
orthonormal �{rotations.

Keywords: singular value decomposition (SVD), SVD{updating, CORDIC, orthonormal �{rotations.

1. Introduction

By computing the singular value decomposition
(SVD) of an m � n data matrix it is possible
to extract the signal and noise subspaces of the
data. The knowledge of these subspaces is essen-
tial in many applications, e.g. DOA{estimation
[22], state{space system identi�cation [19], com-
munication [1]. In practice, where the problems
are usually time varying, it is important to be
able to track these subspaces. Therefore, in recent
years various subspace tracking algorithms have
been proposed. These algorithms are based on
rank revealing decompositions [4], [23], the Lanc-
zos algorithm [5] or the SVD{updating algorithm
[20].

� This work was done while with Rice University, Hou-
ston, Texas supported by the Alexander von Humbodt
Foundation and Texas Advanced Technology Program

The SVD{updating algorithm incorporates a
new data vector by a matrix vector multiplication,
a QRD{updating step and a fraction of a sweep
of Kogbetliantz's SVD algorithm [20], [9]. These
types of computations are well suited for parallel
implementations and it has been shown in [21],
that all the computations can nicely be combined
resulting in a systolic algorithm and architecture
for SVD{updating.

However, this original version of the SVD{
updating algorithm [20] exhibits numerical pro-
blems because round{o� error accumulation de-
stroys the orthogonality of the singular vectors.
Reorthogonalization steps can avoid this problem
but are not appropriate for a systolic implemen-
tation. In [25] this problem was solved by using
the parameterization of the orthonormal matrix of
right singular vectors by n(n� 1)=2 plane rotati-
ons and updating the respective rotation angles.
In this form the SVD{updating algorithm is en-
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tirely based on the evaluation and application of
plane rotations.

These plane rotations can be implemented in
the standard way using square roots and divi-
sions or transcendental functions. In order to
simplify the implementation various possibilities
for the modi�cation of orthogonal plane rotati-
ons have been presented, e.g., square root free or
square root and division free rotations (see e.g.
[17]). With respect to an e�cient ASIC (appli-
cation speci�c integrated circuit) implementation
another widely used method is the CORDIC al-
gorithm [26], [27], i.e., representing the rotation
angle � in the basis \arctan2�i" (we assume a
�nite wordlength of w bits):

� =
wX
i=0

�i�i (1)

where �i = arctan2�i form the basis angles and
�i 2 f+1;�1g are the digits of the representation.
The CORDIC rotation by an angle � can be exe-
cuted by w + 1 recursions each consisting of two
shift{add operations and a scaling procedure (this
scaling can also be executed by shift{add operati-
ons).

It has been shown in [15], [11] that the COR-
DIC idea can be applied to obtain approximate
rotations, i.e. a rotation by an approximate ro-
tation angle ~� � �. Let �i = arctan2�i, i 2
I = f0; 1; : : : ; wg, be the set of possible rotation
angles (a rotation by one speci�c �i is de�ned as
an orthonormal �{rotation [13], [14]), an r{level
approximation of the exact rotation angle � is
~� = �i1+�i2+ : : :+�ir , where i1 > i2 > : : : > ir
and is 2 I. This corresponds to a representation
of the approximate rotation angle ~� as follows:

~� =
rX

s=1

�is�is where �is 2 f+1;�1g: (2)

This representation only consists of speci�c ang-
les of the complete CORDIC sequence (i =
0; 1; : : : ; w). Therefore in contrast to the COR-
DIC algorithm, the speci�c is must be determi-
ned. But on the other hand only the really neces-
sary rotations of the CORDIC sequence are used
(compare for example the two representations (1)

and (2) for a small angle �). In [13] a method
was derived that allows the evaluation of the op-
timal �{rotation angle (i.e. ~� = �i1) using �{
rotations as well. The �{rotation angles i2; i3; : : :
can be determined by an iterative application of
the same procedure [15]. An elementary architec-
ture for evaluating and applying the orthonormal
�{rotations was presented in [14].

It has been shown in [12] that the use of ap-
proximate rotations is worthwile in order to avoid
square root computations or square root and divi-
sion computations without degrading the perfor-
mance of the SVD{updating algorithm. In this
paper we demonstrate the e�ciency of approxi-
mate rotations based on orthonormal �{rotations
for the SVD{updating algorithm. This requires
the extension of the ideas presented in [15] to the
SVD, i.e., the use of orthonormal �{rotation is
discussed for Kogbetliantz's SVD algorithm and
applied to the SVD{updating algorithm as given
in [25]. Note, that only this numerically sta-
ble version of the SVD{updating algorithm is ap-
propriate with respect to an implementation of
the entire algorithm based on orthonormal �{
rotations, since only this version is entirely ba-
sed on the evaluation and application of plane ro-
tations. Simulations show that very coarse ap-
proximations, i.e., using r � w orthonormal �{
rotations (throughout our examples we use r = 1)
per plane rotation works as well as using exact
rotations (i.e. r = w for the exact CORDIC).

In section 2 we present some preliminaries.
First of all the de�nition of orthogonal plane ro-
tations and their implementation using CORDIC
is given. Then, the linear algebra algorithms
composing the SVD{updating algorithm are re-
viewed, i.e., the QRD{updating and the SVD
using Kogbetliantz's algorithm. Section 3 presents
the SVD{updating algorithm as given in [25] re-
quiring only applications and evaluations of plane
rotations throughout the algorithm. In section 4
we describe the computation of the orthonormal
�{rotations for the 2� 1 QRD and the 2� 2 SVD
subproblems. It is shown how the evaluation of
the optimal orthonormal �{rotations for a QRD
subproblem can be referred to the execution of �{
rotations. The orthonormal �{rotations for the
SVD subproblem can be evaluated using the or-
thonormal �{rotations determined for two inde-
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pendent QRD subproblems. The presented proce-
dure for evaluating the orthonormal �{rotations
improves the methods presented in [11], [16] si-
gni�cantly. Approximate rotations based on or-
thonormal �{rotations are applied to the SVD{
updating algorithm in section 5. In section 6
simulations show the e�ciency of the presented
algorithm and section 7 concludes the paper.

2. Preliminaries

In this section the matrix decompositions
(QRD,SVD) required for the SVD{updating al-
gorithm are de�ned and their computation as ap-
propriate for the SVD{updating algorithm (QRD-
updating and computation of the SVD using Kog-
betliantz's algorithm) are reviewed. The discus-
sed versions of these algorithms are entirely based
on the evaluation and application of orthonormal
plane rotations. The implementation of these or-
thonormal plane rotations using CORDIC is also
discussed.

2.1. Orthonormal Rotations

Definition 1 [Orthonormal Plane Rotation] An
orthonormal plane rotation (Givens rotation)
Gpq(�) 2 Rn�n is de�ned by the rotation angle
� and the (p; q){plane in which the rotation takes
place, i.e., the embedding of cos� and sin� in the
(pp; pq; qp; qq) positions of a n � n identity ma-
trix. Gpq(�) is an orthonormal rotation, since

GT
pq(�)Gpq(�) = I.
Without loss of generality we will only consider

in detail the evaluation and application of 2�2 or-
thonormal rotations.

G(�) =

�
cos� sin�
� sin� cos�

�
=

=
1p

1 + tan2�

�
1 tan�

� tan� 1

�
(3)

in the following.

2.2. CORDIC

The CORDIC procedure [26], [27] uses the repre-
sentation (1) for the rotation angle �. Therefore,
tan�i = 2�i holds for the basis angles such that
with (3) one obtains the CORDIC rotation

G(�) =
1

Kw

wY
i=0

�
1 �i2�k

��i2�k 1

�
(4)

where the scaling factor 1
Kw

is independent of the
rotation angle:

1

Kw

=
wY
i=0

1p
1 + 2�2i

: (5)

There have been di�erent e�orts to eliminate the
scaling factor or at least to bring it into a simple
binary representation. Delosme [6] proposed a me-
thod for computing a variable scaling factor on{
line. This case arises for variable iteration bounds
in (4). Instead of working with the basis angles �i

the basis angles are obtained by twice executing a
rotation by �i+1. The respective double rotation
Gd(��) is given by

Gd(��) =
1

K2
w

w+1Y
i=1

�
1� 2�2i �i2�i+1

��i2�i+1 1� 2�2i

�
(6)

The basis angles of the double rotation are given
by

��i = arctan
2�i+1

1� 2�2i
= 2 � �i+1 :

Now, four (instead of two) shift{add operations
are required per recursion step but the scaling fac-
tor is square root free. To avoid the division, in
the scaling factor, too, the following simple iden-
tity can be used:

1

1 + 2�2k
=

= (1� 2�2k)(1 + 2�4k)(1 + 2�8k) � � �
(7)

We will elaborate this further when approximate
rotations are discussed.
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2.3. QR{Decomposition

Definition 2 [QR{decomposition] The QR-
decomposition of a matrix X 2 Rm�n(m � n)
is de�ned by

X = Q

�
R

O

�
; (8)

where Q 2 Rm�m is orthonormal (QTQ = I) and
R 2 Rn�n is upper triangular.
2 � 1 QRD subproblem: A vector [x; y]T is

rotated by the angle � using�
x0

y0

�
= G(�)

�
x
y

�
: (9)

Computing � such that y0 = 0 solves the 2 � 1
QRD subproblem, i.e., compute

� = arctan
y

x
: (10)

Computing the QRD:The triangularmatrix
R is obtained by solving a sequence of 2� 1 QRD
subproblems, i.e., applying a sequence of ortho-
normal rotations Gpq(�) to the matrices X (ori-
ginal X overwritten), where Gpq(�) annihilates
the instantaneous xpq element for 1 < q � n and
q + 1 < p � m, i.e.,

X  Gpq(�) �X ; (11)

where � = arctan(xqp=xpp), such that Q =Q
p;qGpq(�) and X is overwritten by R.
QRD{updating: An alternative for triangu-

larizing X columnwise is to perform the triangu-
larization row by row. This yields the recursive
QRD{updating. LetX [k�1] be the k� 1�n data
matrix available at time step k � 1 and xT[k] be
the new data vector measured at time step k one
obtains

X [k] =

�
�X [k�1]

xT[k]

�
; (12)

where � is the forgetting factor.
Given the QRD of X [k�1]

X [k�1] = Q[k�1]

�
R[k�1]

O

�
; (13)

the upper triangular factorR[k] is obtained by ap-
pending the new data vector xT[k] to the weighted
matrix �R[k�1] and using a sequence of Givens
rotations Gpq(�) (p = k; 1 � q � n) to annihilate
the appended row, i.e.,

�
R[k]

0T

�
 

nY
q=1

Gkq(�)

�
�R[k�1]

xT[k]

�
: (14)

2.4. Singular Value Decomposition

Definition 3 [SVD] The SVD of a matrix X 2
Rm�n is de�ned by

X = U�V T (15)

where U 2 Rm�m and V 2 Rn�n are ortho-
normal matrices (UTU = I, V TV = I) and
� = diag(�1; : : : ; �n) is an m � n diagonal ma-
trix containing the singular values �i.
2� 2 SVD subproblem: Given a 2�2 matrix

A =

�
a11 a12
a21 a22

�
the rotationsG(�U ) andG(�V )

are applied to the left and right of A:�
a011 a012
a021 a022

�
= G(�U )T

�
a11 a12
a21 a22

�
G(�V ) : (16)

Computing �U and �V such that a012 = 0 and
a021 = 0 holds, solves the 2 � 2 SVD subproblem.
It has been shown in [28], [3], [7] that the angles
�U and �V can be determined from two angles
�R and �S that can be computed independently
by solving two 2� 1 QRD subproblems. With

x1 = (a22 + a11)=2; x2 = (a22 � a11)=2;
y1 = (a21 � a12)=2; y2 = (a21 + a12)=2;

(17)

we determine the two rotationsG(�R) andG(�S)
such that�

x01
y01

�
= G(�R)

�
x1
y1

�
(18)

�
x02
y02

�
= G(�S)

�
x2
y2

�
; (19)

yields y01 = 0 (�R = arctan(y1=x1)) and y02 = 0
(�S = arctan(y2=x2)). Then using

�U =
1

2
(�S � �R),
, G(�U) = G(��R=2)G(�S=2)

(20)
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�V =
1

2
(�S +�R),

, G(�V ) = G(�R=2)G(�S=2)
(21)

in (16) yields a012 = a021 = 0.
Kogbetliantz's SVD algorithm: Without

restriction of generality we will only consider the
Kogbetliantz SVD algorithm for a square matrix
A 2 Rn�n (it is well known that it is advantage-
ous to apply Kogbetliantz's SVD algorithm to the
upper triangular matrix R obtained by a prepa-
ratory QRD). The Kogbetliantz SVD algorithm is
given as follows:
V = I ; U = I;
for l = 0; 1; 2; : : :

for all index pairs (p,q)

A  GT
p;q;l(�

U ) �A �GT
p;q;l(�

V )
V  V �Gp;q;l(�V )
U  U �Gp;q;l(�U)

(22)

whereGp;q;l(�U ) andGp;q;l(�V ) are the plane ro-
tations in the (p; q){plane of the l{th iteration.
For the index pairs (p; q) a cyclic{by{row ordering
scheme is used, i.e.,

(p; q) =

= (1; 2); (1; 3); : : : ; (1; n)(2; 3); : : : ; (n � 1; n):
(23)

This ordering scheme can be mapped to a paral-
lel ordering scheme making the Kogbetliantz al-
gorithm highly suited for parallel implementation
[18]. The execution of all n(n� 1)=2 pairs of (23)
is called a sweep (l{th sweep).

The plane rotationsGp;q;l(�U ) and Gp;q;l(�V )
are obtained by solving the respective (p; q) 2� 2
SVD subproblem for each transformation (22).
Therefore, the o�{diagonal quantity

S =

vuutkAk2F �
nX
i=1

a2ii (24)

is reduced by each transformation (22) such that
the matrix A converges to a diagonal matrix con-
taining the singular values of A (i.e. �).

2.5. Remarks on Parallel Implementations

The discussed algorithms (QRD, Kogbetliantz's
SVD algorithm) are highly suited for parallel im-
plementation. This is essentially because of the
representation of the orthogonal matrices in terms
of orthonormal plane rotations. This parametri-
zation (representation) of the orthogonal matrices
enables the parallel implementation of the algo-
rithms on systolic arrays [10], [2] and also the use
of CORDIC arithmetic for the implementation of
the processor elements [28] (it is also the essen-
tial idea behind avoiding the reorthogonalization
steps in the SVD{updating algorithm that is dis-
cussed in the next section). It is interesting to
note that this parametrization is a result of Euler
(1770) (can be found in [8]) at a time when neither
parallel implementations nor computer arithmetic
was an issue.

3. SVD{Updating Algorithm

The important result of Moonen et. al. [20], [21]
was to realize that the parallel implementation of
the basic algorithms (QRD{updating, Kogbetli-
antz's algorithm) can be nicely combined to the
SVD{updating algorithm.

The SVD{updating algorithm is based on a ma-
trix vector multiplication, a QRD-updating step,
and the computation of the SVD by the Kogbetli-
antz algorithm. LetX [k�1] = U [k�1]�[k�1]V [k�1]

be the SVD ofX [k�1] at time step k�1 and xT[k] be
the new data vector. In order to put the QRD{
updating and the SVD{computation together it
is necessary to project the new data vector xT[k]
to the already computed matrix of right singular
vectors V [k�1]:

~xT[k]  xT[k]V [k�1] : (25)

Then, the QRD{updating is executed using ~xT[k]
as the appended vector:

�
~R[k]

0T

�
 

nY
q=1

Gkq(�)

�
�R(k�1)

~xT[k]

�
(26)

Now, the SVD of ~R[k] is computed using Kogbet-
liantz's algorithm. In order to reduce the comple-
xity of the Kogbetliantz's algorithm it was shown
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in [9], [20] that one sweep or even a fraction of
a sweep of Kogbetliantz's SVD algorithm is su�-
cient to track the subspace of su�ciently slow time
varying processes. Annihilating only the matrix
elements ~ri;i+1(i = 1; : : : ; n�1) after each update,
i.e.

R[k] 
n�1Y
i=1

GT
i;i+1;[k](�

U ) � ~R[k] �
n�1Y
i=1

Gi;i+1;[k](�
V )

(27)

V [k]  V [k�1] �
n�1Y
i=1

Gi;i+1;[k](�
V ) (28)

also enables a regular implementationof the SVD{
updating on a systolic array [21]. In this form
((25),(26),(27),(28)) the SVD{updating algorithm
requires a reorthogonalization of the matrices
V [k]. This reorthogonalization can be avoided by
parameterizing the V [k] in terms of n(n � 1)=2
orthogonal rotations

V [k�1] =
nY
i=1

nY
j=i+1

Gi;j;[k�1](�) (29)

(e.g. a QRD of V [k�1] yields this factorization)
and updating the respective rotation angles by

applying the rotations
n�1Q
i=1

Gi;i+1;[k](�
V ) to this

factorization [25]. Now, the matrix vector mul-
tiplication (25) can be also executed by the app-
lication of rotations. Therefore, this form of the
SVD{updating algorithm is completely based on
the evaluation and application of orthonormal ro-
tations.

4. Orthonormal �{Rotations

All rotation computations in the SVD{updating
algorithm are replaced by approximate rotations
in the following, where orthonormal �{rotations
are used as the set of available approximate rota-
tions.

4.1. QRD subproblem

While the execution of an exact rotation as descri-
bed in (9), (10) guaranees y0 = 0, an approximate
rotationG(~�) de�ned by an approximate rotation
angle ~� � � only ensures

j y0 j=j d j � j y j (30)

with 0 �j d j< 1.
Suppose we have used an approximate angle ~�,

equation (9) yields:

y0 = � sin ~� � x+ cos ~� � y =
= (� sin ~� � x

y
+ cos ~�) � y : (31)

Representing this equation (31) according to (30)
using tan� = y=x one obtains

d(�; ~�) = � sin ~� � 1

tan�
+ cos ~� : (32)

Obviously, for the exact rotation where ~� = � one
obtains d = 0.

At this point having de�ned an approximate
rotation we make use of the idea of CORDIC [26],
i.e. with respect to a simple implementation of
the rotation we restrict ourselves to the set of ap-
proximate angles

~� = �i = arctan2�i; (33)

where i 2 I = f0; 1; 2; : : : ; wg. Therefore, we only
allow rotations of the form

G(�i) =
1

Ki

Gu(�i) =

=
1p

1 + 2�2i

�
1 �i2�i

��i2�i 1

�
;
(34)

where 1=Ki = 1=
p
1 + 2�2i is the scaling factor

and Gu(�i) is an (unscaled) �{rotation. G(�i) is
called an orthonormal �{rotation.

Since an orthonormal �{rotationG(�i) is de�-
ned by the angle index i computing the optimal or-
thonormal �{rotation G(�io) corresponds to �n-
ding the CORDIC angle �i (i 2 I) which is closest
to the exact rotation angle � = arctan(y=x), i.e.
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j �i
o
� � j= min

i2I
j �i � � j

) ~� = �i
o
:
(35)

The direction of the rotation �i is determined by
�i = sign(x)sign(y). Therefore, having determi-
ned �i we can work with x > 0 (x  jxj) and
y > 0 (y  jyj) to evaluate �i

o
.

Choosing the optimal approximate angle accor-
ding to (35) is equivalent to

min
i2I
jd(�;�i)j (36)

This minimization can be done by determing the
angle intervals [�gi;�gi+1] such that ~� = �i is
the optimal angle whenever � 2 [�gi;�gi+1[. The
limits of the intervals �gi follow from the solution
of

d(�gi;�i) = �d(�gi;�i+1) ; (37)

i.e. the angle �gi where choosing �i leads to the
same reduction factor jdj as choosing �i+1. Sol-
ving (37) yields:

tan�gi =
sin�i + sin�i+1

cos�i + cos�i+1
=

= tan

�
�i +�i+1

2

�
:

(38)

As the orthonormal �{rotation G(�i) in (34)
is de�ned by one speci�c recursion step of the ori-
ginal CORDIC sequence (4) we de�ne an ortho-
normal double �{rotation by one speci�c rotation
step of the double rotation sequence (6):

Gd(��i) =
1

K2
i

Gdu(��i) =

=
1

1 + 2�2i

�
1� 2�2i �2�i+1

��2�i+1 1� 2�2i

� (39)

where 1=K2
i = 1=(1 + 2�2i) is the scaling factor

and Gdu(i) is the (unscaled) double �{rotation.
The scaling factor can be recursively computed
by shift{and{add operations [15] (see (7)):

1=K2
i = (1� 2�2i)

bY
s=1

(1 + 2�2s+1i) (40)

with b = log2 dw2ie. Since the orthonormal double
�{rotations enable an easy scaling factor compen-
sation (40) and since the limits of the intervals
can be easily determined for the set of orthonor-
mal double �{rotations we restrict our set of ap-
proximate rotations to the orthonormal double �{
rotations from now on. The limits of the intervals�
��gi; ��gi+1

�
for the choice of the optimal double

�{rotation angle are now given by

tan ��gi = tan

� ��i + ��i+1

2

�
: (41)

Therefore, given the vector v = [x; y]T (i.e.
tan� = y=x) we use ��i if � > ��gi and ��i+1 if � �
��gi. Since ��gi = ��i=2 + ��i+1=2 = �i+1 + �i+2

this decision can be made by using two unscaled
�{rotations Gu(�i+1) and Gu(�i+2), i.e. com-
pute

[xr; yr ]
T = Gu(�i+1)Gu(�i+2)[x; y]

T : (42)

Thereby, we obtain

yr > 0, � > ��gi ) use ��i

yr � 0, � � ��gi ) use ��i+1 :

In order to �nd the optimal io one more uns-
caled �{rotation is required. Let man(a) and
exp(a), respectively, denote the mantissa and the
exponent of a binary oating point number a.
Since we can obtain an estimate for the optimal
io by computing ie = exp(y) � exp(x) and since
man(y)=man(x) 2 [0:25; 1[ one obtains io 2 J =
fie; ie + 1; ie + 2g. Therefore, it is possible to de-
termine the optimal ��io (io 2 J ) as follows. Com-
pute:

v0 = Gu(�i+2)v

v1 = Gu(�i+1)v0

v2 = Gu(�i+3)v0 :

Then

��io =

8<
:

��ie if v1(2) > 0
��ie+1 if v2(2) > 0
��ie+2 otherwise

This procedure yields the optimal orthonor-
mal double �{rotation Gd(��io) such that y0 =
d(�; ��io) � y with jd(�; ��io)j � 1=3.
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4.2. SVD subproblem

The optimal orthonormal double �{rotations for
the two QRD subproblems (18) and (19), i.e.
Gd(��R

i
o

) and Gd(��S
i
o

), can be determined by the
procedure described above. Given these rotations
the SVD rotations are obtained according to (20)
and (21). Since ��i � 2��i+1 we obtain the ap-
proximate rotations for the SVD subproblem as
follows:

G(~�U) = Gd(���R
io+1)Gd(��

S
io+1) (43)

G(~�V ) = Gd(��
R
io+1)Gd(��

S
io+1) (44)

By using io+1 instead of io for the SVD rotations
we actually use ~�R = 2��R

i
o
+1 and ~�S = 2��S

i
o
+1 as

the approximate angles for the QRD subproblem
(instead of ~�R = ��R

io
and ~�S = ��S

io
). Therefore,

the appximation of the QRD subproblem changes
correspondingly and we obtain y0 = d(�; ~�) � y
with jd(�; ~�)j < dmax = 0:42.

It remains to show that a0212+a0221 � d2SV D(a
2
12+

a221) with 0 � d2SV D < 1 is guaranteed for each
subproblem, in order to meet the requirements
for the convergence of the Kogbetliantz algorithm
[12]. For the two QRD subproblems (18) and (19)
one obtains

y01 = d1y1 where 0 � jd1j < dmax (45)

y02 = d2y2 where 0 � jd2j < dmax (46)

such that [28]

a012 = �y01 + y02; a021 = y01 + y02: (47)

Therefore, with (17) one obtains

a0212 + a0221 = 2(y021 + y022 )

< 2d2max(y
2
1 + y22)

= d2max(a
2
12 + a221)

such that

d2SV D � d2max = 0:17 : (48)

Furthermore, instead of ��1 = 53:1301� we use
90�� ��1 = 36:8699� that guarantees j~�U j; j~�V j <
90� and also leads to an improved approximation

of the exact angles. Note that this method im-
proves the reduction factors (and therefore the
performance of the entire algorithms) given in
[15], [11], [16].

As discussed in [15], [13] it is always possible to
improve the accuracy of the approximate rotations
by using r > 1 orthonormal double �{rotations to
approximate the exact rotation.

5. SVD{Updating Using Orthonormal �{

Rotations

Now, we examine the SVD{updating algorithm
for its performance using approximate rotations.
Throughout our discussion we assume that only
one orthonormal double �{rotation is used to ap-
proximate the exact rotations.
QRD{updating: The use of approximate ro-

tations results in an iterative version of the QR{
decomposition [11]. Several sweeps are necessary
to achieve a su�cient approximation of the QR{
decomposition. Another possibility is the impro-
vement of the accuracy of the orthogonal plane
rotation by increasing the number r of orthogonal
�{rotations per plane rotation. Thereby, the num-
ber of required sweeps is reduced. In the case of
QRD{updating, however, the accuracy of the ap-
proximate rotations is not as essential [11]. In the
case of the SVD{updating algorithm, where the
new data vector is projected to the orthogonal ba-
sis V [k�1] (25) the requirements on the accuracy of
the rotations is decreased since the projection al-
ready maps x[k] approximately into the new basis
V [k] (for su�ciently slow time varying processes).
This is also the reason for the success of the appro-
ximations to the Kogbetliantz algorithm discussed
in the next paragraph. In our examples (see sec-
tion 6) we will use only one orthonormal double
�{rotation to approximate the exact rotations of
the QRD{updating. Note, however, that if the
time variance increases, the accuracy of the ap-
proximate rotations (i.e. of the QRD{updating)
can be increased by choosing r > 1.
Approximations of Kogbetliantz's SVD

algorithm: In [20], [21], [25] only a fraction of
one sweep of Kogbetliantz's SVD algorithm is exe-
cuted per QRD{update without signi�cant dete-
rioration of the tracking performance. Executing
only a fraction of one sweep (n � 1 rotations) al-
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Fig. 1. Frequency estimation for s1(t) using the exact SVD
(top), using the SVD{updating algorithm with exact rota-
tions (middle), and the SVD{updating algorithm based on
one orthonormal double �{rotation (bottom).

ready is a very coarse approximation of the Kog-

betliantz algorithm. Using approximate rotations,

i.e., annihilating the o�{diagonal elements by not

completely setting them to zero but only redu-

cing them, is a further degree of approximation

brought into the Kogbetliantz algorithm. Com-

pared to the coarse approximation one obtains by

executing only a fraction of a sweep, however, the

additional degree of approximation added by using

approximate rotations is negligible (especially for

d2SV D < 0:17� 1).

Representation and updating of singular

vectors: At time step k � 1 V [k�1] is descri-
bed by the n(n � 1)=2 rotations parametrizing
the orthonormal matrix V [k�1]. In order to get
V [k], V [k�1] is updated with the n � 1 rotati-
ons

Q
Gi;i+1;[k](�

V ), i.e. the rotation angles of
the parametrization must be updated. In [25] a
method for executing this updating is described.
This also enables the execution of the matrix vec-
tor multiplication by the application of rotations.
Storing each angle in the basis ��i according to (2),
this angle updating can be easily extended to the
use of approximate rotations.
Implementation: One of the strengths of the

SVD{updating algorithm is the possibility of im-
plementing it on a systolic array [21]. As shown
in [24] there are many equivalent implementations
of the SVD{updating algorithm enabling an arbi-
trary degree of throughput. Using orthonormal
�{rotations instead of exact rotations reduces the
overall amount of required shift{add operations
(usually r � w is su�cient).

6. Simulations

The performance of the algorithms is analysed for
two di�erent kinds of signals:
� s1(t) is a signal where the frequency jumps sud-

denly
� s2(t) is a frequency modulated signal
In both cases SNR= 10dB holds. m = 8 data
samples are used per time step. n = 140 sam-
ple points of the signals are taken. The frequen-
cies are estimated in each time step using the
ESPRIT algorithm based on the signi�cant sub-
spaces as obtained from the singular vectors of
V [k] belonging to the dominant singular values.
Figure 1 (jump of frequency) and Figure 2 (modu-
lation of frequency) compare the SVD, the SVD{
updating, and the SVD{updating using orthonor-
mal �{rotations. The �gures are organized as fol-
lows. The dotted lines in each subplot show the
exact frequencies at each time step. The solid lines
show the estimated frequencies. The subplots at
the top of each �gure show the estimated frequen-
cies if a complete SVD is executed for each time
step (i.e. call MATLAB svd(X [k]) for each k).
The subplots in the middle of the �gures show the
estimated frequencies using the SVD{updating al-
gorithm with exact rotations. The subplots at
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Fig. 2. Frequency estimation for s2(t) using the exact SVD
(top), using the SVD{updating algorithm with exact rota-
tions (middle), and the SVD{updating algorithm based on
one orthonormal double �{rotation (bottom).

the bottom of each �gure show the estimated
frequencies if the SVD{updating algorithm uses
only one orthonormal double �{rotation to appro-
ximate the exact rotations of the QRD subpro-
blems (the approximate SVD rotations are obtai-
ned as products of these two orthonormal double
�{rotations, see (43),(44)).

7. Conclusions

In this paper it was shown that the use of approxi-
mate rotations based on orthonormal �{rotations

is particularly well suited for the SVD{updating
algorithm. For example, slowly time varying pro-
cesses correspond to small rotation angles which
is especially advantageous for approximate rotati-
ons. Assuming a small angle the original CORDIC
would execute the entire sequence of �{rotation
angles increasing the angle in the beginning of
the sequence before decreasing it at the end of
the sequence. Therefore, compared to the origi-
nal CORDIC (exact rotation) only a fraction of
the shift{add operations is required for the ortho-
normal �{rotation based algorithms in order to
obtain essentially the same performance.
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