
ON THE PARALLEL IMPLEMENTATION OF JACOBI AND

KOGBETLIANTZ ALGORITHMS �

J�URGEN G�OTZE y

Abstract. Modi�ed Jacobi and Kogbetliantz algorithms are derived by combining methods for
modifying the orthogonal rotations. These methods are characterized by the use of approximate
orthogonal rotations and the factorization of these rotations. The presented new approximations
exhibit better properties and require less computational cost than known approximations. Suitable
approximations are applied together with factorized rotation schemes in order to gain square root
free or square root and division free algorithms. The resulting approximate and factorized rotation
schemes are highly suited for parallel implementations. The convergence of the algorithms is analyzed
and an application in signal processing is discussed.

Key words. Jacobi's/Kogbetliantz's algorithm, parallel algorithms, approximate and factorized
rotations, convergence

AMS subject classi�cations. 65F15

1. Introduction. For a real m � n (m � n) matrix A the decomposition

A = U�VT (UTU = I, VTV = I, � diagonal)

is called the singular value decomposition (SVD) of A. For a symmetric A (AT = A)
the corresponding decomposition

A =W�WT (WTW = I, � diagonal)

is the eigenvalue decomposition (EVD) of A. The methods of choice for the fast
parallel computation of these decompositions are Kogbetliantz's (SVD) and Jacobi's
(EVD) algorithm [3, 23], since they exhibit a signi�cantly higher degree of parallelism
than the QR{algorithm.

It is well known [6, 20, 8, 5, 21], that it is advantageous to apply the Kogbetliantz
algorithm (KA) to the triangular matrix R obtained from A by a preparatory QR-
decomposition A = QR. This triangular Kogbetliantz algorithm (TKA) as well
as the Jacobi algorithm (JA) only have to work with triangular matrices, since the
upper triangular structure of the initial matrix (upper triangular part (D + T) of
A = TT +D + T for the JA; upper triangular matrix R of the QR-decomposition
A = QR for the TKA) can be preserved during the algorithms.

According to this upper triangular structure one sweep of the JA and the TKA
can be implemented on an upper triangular array of processors with nearest neighbor
interconnections [24, 6]. The di�erent parallel implementations of the TKA (JA) are
distinguished by an algorithm for evaluating the rotations and by an ordering scheme
for the rotations. Here, we are mainly interested in deriving e�cient algorithms for
evaluating the rotations. For ordering schemes, which enable an e�cient parallel
implementation on multiprocessor arrays with nearest neighbor interconnections, we
refer to [23, 30].

In this paper new JAs and TKAs are derived by combiningmethods for modifying
the evaluation of the orthogonal rotations. These methods are characterized by the

� This work was supported by the German National Science Foundation
y Institute of Network Theory and Circuit Design, Technical University of Munich, Arcisstr.21,

80333 Munich, Germany (jugo@nws.e-technik.tu-muenchen.de).

1

2 J. G�otze

use of approximate (but still orthogonal) rotation schemes and the use of factorized
rotation schemes for gaining square root free [11, 12] or square root and division free
[14] rotations.

The possibility of using approximate rotation schemes has already been inve-
stigated for the sequential case in [29, 10, 33]. Since in a parallel environment the
arithmetic is much more costly than other components (e.g. storage access), Modi and
Pryce [25] and Charlier et al. [6] have shown, that the use of approximate rotations
gives worthwile speedups on parallel computers.

The second method for modifying rotations is the use of factorized rotations
[11, 12, 14]. By applying these factorized rotation schemes together with suitable
approximations a further speedup can be achieved and the hardware requirements
of the processor arrays can signi�cantly be decreased. For example, it is possible to
obtain a square root and division free TKA/JA (this is not possible if the factorized
rotation scheme is applied to the exact rotations [27]), which is essential for regular
processor arrays (e.g. application speci�c integrated circuit (ASIC){ based processor
arrays).

In section 2 we only consider the JA, since the results for the JA can easily be
extended to the TKA. A brief review of the JA is given and the possibility of using
approximate rotation schemes is described. New approximations are presented, which
exhibit better properties and require less computational cost than the known appro-
ximations in [33, 25, 6]. The factorized rotation schemes for gaining square root free
or square root and division free rotations are also reviewed. Then, the approximate
rotation scheme and the factorized rotation scheme are combined for obtaining a pro-
cedure for the design of square root free or square root and division free algorithms.
This section ends with the comparison of the di�erent Jacobi rotations concerning
their required operations and their suitability for a parallel implementation. In sec-
tion 3 it is shown that all the results for the JA can be extended to the TKA. The
same approximations can be used and the factorized rotations can be derived in the
same way. It is even possible to show that using the same approximation for the
TKA as for the JA results in a better overall performance of the TKA compared to
the JA. In section 4 the global and the ultimate quadratic convergence of the TKA
and the JA with exact/approximate rotations is analyzed. In section 5 it is shown that
the approximate and factorized scheme is particularly advantageous for SVD{based
subspace tracking algorithms [9, 26]. Section 6 gives some concluding remarks.

2. Jacobi's Algorithm.

2.1. Basic Algorithm. The Jacobi algorithm works by applying a sequence of
orthogonal similarity transformations to the symmetric matrix A:

A(0) := A

For k = 0; 1; 2; : : :

A(k+1) = JpqA
(k)Jpq(2.1)

We assume throughout this paper, that in virtue of a parallel implementation the
index pairs (p; q) are choosen in an ordering scheme equivalent to the cyclic-by-row
scheme and the rotation Jpq includes the required row (left-sided rotation) and column
(right-sided rotation) exchanges (see section 3 of [6] for details), i.e.

Parallel Jacobi/Kogbetliantz Algorithms 3

Jpq = JTpq =

2
666666666664

1 0
.. .

�s c
. . .

c s
. . .

0 1

3
777777777775

c = cos�k

s = sin�k

(2.2)

Since the A(k) are symmetric, they are completely determined by their upper
triangular part, such that only one triangle of A(k) must be processed and the o�-
diagonal quantity of A(k) can be measured by

S(k) =

vuut1

2

"A(k)
2
F
�

nX
i=1

�
a
(k)
ii

�2#
:(2.3)

Since Jpq is an orthogonal transformation, i.e.
A(k+1)

F
=
A(k)

F
, and one

similarity transformation (2.1) a�ects only rows and columns p and q of A(k), it is
easy to verify [12] that

h
S(k+1)

i2
=
h
S(k)

i2
�
��

a(k)pq

�2
�
�
a(k+1)pq

�2�
:(2.4)

Obviously, the maximal reduction of S(k) is obtained if a
(k+1)
pq = 0 after the

similarity transformation (2.1). This can be achieved by the following cosine-sine pair
(c; s), which de�nes the rotation (2.2):

tex = tan�k =
sign (�J)

j�J j+
p
1 + �2J

with �J =
a
(k)
pp � a

(k)
qq

2a(k)pq

(2.5)

c =
1p

1 + t2ex
s = texc(2.6)

In the subsequent sections a rotation Jpq de�ned by (c; s) of (2.6) is called an exact
Jacobi rotation.

2.2. Approximate Rotation Schemes. For the reduction of S(k) it is not
necessary to compute the exact Jacobi rotation, but it is su�cient to compute (c; s),
such that the orthogonality is preserved and

ja(k+1)pq j = jdJ jja(k)pq j with 0 � jdJ j < 1(2.7)

holds. Therefore, the reduction of
�
S(k)

�2
is a factor (1� d2J) less than the reduction

by the exact rotation. A Jacobi rotation with an approximate computation of (c; s)
is called an approximate Jacobi rotation and is described by ~Jpq.

4 J. G�otze

Table 2.1

Formulae for the tangent of the rotation angle and accuracy of the corresponding approximations

Approximation Accuracy

tKA1 =
�J

1+j�J j jdJ j � 0:21

tKA2 = �J jdJ j � 1
tKA3 =

�J
1+�2

J

jdJ j � 1

tKA4 =
�J (1+�j�J j)
1+�j�J j+��2J

(� = 2� =
p
2 + 1) jdJ j < 0:25

tKA5 =

(
sign (�J) if j�J j � 2

1+
p
2

4�J
4��2

J

if j�J j < 2
1+

p
2

jdJ j � 0:6036

tNA1 =

(
sign(�J)

1+j�J j+0:5�2
J

if j�J j � 1
�J

1+�2
J

if j�J j > 1 (j2�Jj < 1)
jdJ j � 0:035

tNA2 =

n
sign (�J) if j�J j � 1
�J if j�J j < 1

jdJ j � 0:5

tNA3 =

�
sign(�J) if j�J j � 1:3982
�J

1+�2
J

if j�J j < 1:3982 jdJ j � 0:3576

tNA4 =

8<
:

sign(�J) if j�J j � 2
r � �J with r = 1=2 if j�J j � 1

r = 2=3 if j�J j � 0:5
r = 1 if j�J j < 0:5

jdJ j � 0:25

tNA5 =

(
sign(�J) if j�J j � 2
1
2�J if j�J j � 1
�J

1+�2
J

if j�J j < 1
jdJ j � 0:25

Since the orthogonality has to be preserved for the approximate rotation it is
convenient to establish the approximations for t = tan� = s=c instead of (c; s). Since
(2.1) yields

a(k+1)pq = dJa
(k)
pq with dJ = c2 � s2 � 2�Jcs

we obtain

jdJ(t; �J)j =
����1� 2�J t� t2

1 + t2

���� :(2.8)

The maximal value of jdJ j is a measure for the badness of the approximation. It is
easy to verify that the exact Jacobi rotation yields dJ (tex; �J) = 0.

In the following the known approximations (KA) of [33, 25, 6] are discussed and
some new approximations (NA) are derived. The formulae for the tangent of the
rotation angle of the approximations are summarized in Table 2.1.

With �J = 1
2�J

the KAs of [6, 25] are given by tKA1 (formula 1 of [25], ap-
proximation 2 of [6]), tKA2 (formula 3 of [25], approximation 1 of [6]) and tKA3

(approximation 3 of [6]). KA1 yields jdJ j < 0:21. However, tKA1 does not converge
to tex for j�J j ! 1, although dJ (j�J j ! 1) ! 0 holds (i.e ultimate quadratic con-
vergence). tKA2 and tKA3 converge to tex for j�J j ! 1 and therefore they yield a
faster convergence than tKA1 as j�J j increases during the algorithm. However, only
jdJ j � 1 can be achieved, because of the bad approximation for j�J j ! 0 (tKA2 !1,
tKA3 ! 0 while tex ! 1).

A way to circumvent these problems is to distinguish between small and large
values of j�J j. Approximation 3 of [6] can be obtained by using the approximationp
1 + x2 � 1 + 1

2x
2 according to the Taylor series

p
1 + x2 = 1 + 1

2x
2 � 1

6x
4 + � � �.

Parallel Jacobi/Kogbetliantz Algorithms 5

Table 2.2

Required average number of sweeps for 10 random matrices per n

p
&� free

n ex. KA1 KA2 KA3 KA4 KA5 NA1 NA2 NA3 NA4 NA5 NA4 NA5
10 5.9 6.8 7.1 6.5 7.0 7.0 5.9 6.3 6.0 5.9 5.9 6.0 6.1
20 6.4 7.6 9.4 7.4 7.7 8.6 6.4 7.0 6.8 6.8 6.8 6.9 6.9
30 7.0 8.0 9.9 7.7 8.2 8.8 7.0 7.5 7.0 7.2 7.0 7.1 7.0
40 7.2 8.3 9.7 8.5 8.3 9.5 7.1 8.0 7.3 7.5 7.4 7.4 7.3

However, this approximation is only accurate if jxj < 1. Therefore, the approximation
is bad for j2�J j > 1. But, if we apply this approximation to

tex =
sign (�J)

j�J j+
p
1 + �2J

=
2�J

1 +
p
1 + 4�2J

(2.9)

for j�J j < 1 (
p
1 + �2J � 1 + 1

2�
2
J) and j2�J j < 1 (

p
1 + 4�2J � 1 + 2�2J), respectively,

we obtain tNA1 for which (2.8) yields jdJ (tNA1; �J)j < 0:035. This NA1 requires one
square root less than the exact formula (as well as KA3) and requires a comparison
(KA3 requires no comparison but has a much worse jdJ jmax).

Further NAs can be derived in a similiar way. Reducing the computational cost
means an increase of the maximal value of jdJ j but the following NAs still provide the
same advantages as NA1 in comparison to the KAs, i.e. jdJ jmax � 1 and tNA ! tex
for j�J j ! 0 and j�J j ! 1. The easiest way to ful�ll these conditions are the
approximations NA2 and NA3. NA3 is slightly better than NA2, since for small j�J j
KA3 is a better approximation than KA2. Therefore, it can be used earlier as j�J j
decreases during the algorithm. Since jdJ(sign(�J); �J)j = 1=2j�J j = j�J j holds, this
is also the reason for jdJ (tNA3; �J)j < jdJ (tNA2; �J)j. Better approximations (smaller
jdJ jmax) can easily be obtained by inserting more cases in NA2 and NA3. This results
in NA4 and NA5, respectively.

Until now we have omitted KA4 (tKA4 is formula 2 of [25]) and KA5 (tKA5 is
given in [33],p.276) for the following reasons. KA4 requires greater cost and has a
greater jdJ jmax than KA1. Therefore, it is not discussed further in [25] and it has
already been omitted in [6]. Wilkinson [33] has already used di�erent cases for his
approximation KA5 (as well as all NAs). However, it is easy to see that KA5 is a
worse approximation and requires greater computational cost than NA2.

In Table 2.2 the average number of sweeps required by 10 random matrices is
shown for all the above mentioned approximations for n = 10; 20; 30; 40. For all our
numerical examples the algorithms are terminated, if S(k) < 10�12S(0). The better
performance of the NAs in comparison to the KAs is shown in Fig. 2.1 (Fig. 2.1 a:
NA2 and NA4 in comparison to KA2 and the exact rotation; Fig. 2.1 b: NA3 and
NA5 in comparison to KA3 and the exact rotation). The NAs require less sweeps and
less computational cost than the corresponding KAs.

Furthermore, in the case of clusters of eigenvalues, for which j�J j remains small
during the algorithm, it is essential that not only jdJ j becomes small as j�J j increases
during the algorithm but that the approximation is also good for small values of j�J j.
These requirements are ful�lled by the NAs. Therefore, for clusters of eigenvalues the
NAs yield much better results than the KAs. As an example in Table 2.3 the required
number of sweeps is shown for the Hilbert matrices of dimension n = 10; 20; 30; 40.

2.3. Factorized Rotation Schemes. Factorizations of Givens rotations [11]
have been used for the parallel implementation of the QR-decomposition by several

6 J. G�otze

Table 2.3

Required number of sweeps for Hilbert matrix of dimension n

p
&� free

n ex. KA1 KA2 KA3 KA4 KA5 NA1 NA2 NA3 NA4 NA5 NA4 NA5
10 5 8 8 9 8 8 5 6 7 9 7 7 6
20 5 8 7 10 9 8 6 6 7 7 8 8 6
30 5 9 10 13 8 10 6 7 7 9 6 8 7
40 6 8 8 10 10 12 6 7 7 7 7 8 7

0 5 10 15 20 25 30 35 40
3

4

5

6

7

8

9

10

11

matrix dimension n

a
ve

ra
g

e
 n

u
m

b
e

r
o

f
sw

e
e

p
s

exact

KA2

NA2

NA4

(a)

0 5 10 15 20 25 30 35 40
3

4

5

6

7

8

9

10

11

matrix dimension n

a
ve

ra
g

e
 n

u
m

b
e

r
o

f
sw

e
e

p
s

exact

KA3

NA3

NA5

(b)

Fig. 2.1. Average number of sweeps for 10 random matrices per n.

Parallel Jacobi/Kogbetliantz Algorithms 7

authors [1], since the implementation of the square roots can be avoided. Recently, a
square root and a division free Givens rotation has been presented [14], such that a
processor array for the QR-decomposition only requires additions and multiplications
and a distributed computation of the rotation factors is possible [15]. These factorized
rotation schemes can also be applied to orthogonal similarity transformations [27, 16].
For that purpose the matrices A(k) are factorized as follows:

A(k) =
h
Z(k)

i
�1=2

Y(k)
h
Z(k)

i
�1=2

(2.10)

with Z(k) = diag
�
z
(k)
i

�
. With a further diagonal matrix Z(k+1) = diag

�
z
(k+1)
i

�
a

rotation Kpq (no matter whether it is a Givens or a Jacobi rotation) can also be
described in factorized form:

Kpq =
h
Z(k)

i1=2
K0

pq

h
Z(k+1)

i
�1=2

(2.11)

The application of the factorized rotation scheme to the similarity transformation
A(k+1) = KT

pq �A(k) �Kpq leads to the reduction of the square roots by one half, ifKpq

is an exact Jacobi rotation [27] and to the complete avoidance of the square roots [27]
or of the square roots and the divisions [16], if Kpq is a Givens rotation. A Givens
rotation is distinguished from a Jacobi rotation, since di�erent formulae are used to
compute their rotation parameters. In contrary to Givens rotations the exact Jacobi
rotations cannot be factorized, such that square roots or square roots and divisions
can completely be avoided. However, if the factorized rotation schemes are applied
to suitable approximations of the exact Jacobi rotation, it is possible to gain square
root free or square root and division free Jacobi rotations.

The factorization of Kpq =

� �s c
c s

�
according to (2.11) yields:

Kpq =

=

"
z
(k)
q

�
1 + t2

�
z
(k)
p

�
1 + t2

�
#
�1=2

2
664
�t
r

z
(k)
q

z
(k)
p

1

1 t

r
z
(k)
p

z
(k)
q

3
775
"
z
(k)
p

z
(k)
q

#1=2

(2.12)

or

Kpq =

=

"
z
(k)
q

�
c2t + s2t

�
z
(k)
p

�
c2t + s2t

�
#
�1=2

2
664
�st

r
z
(k)
q

z
(k)
p

ct

ct st

r
z
(k)
p

z
(k)
q

3
775
"
z
(k)
p

z
(k)
q

#1=2

(2.13)

depending on t = st=ct and (ct; st), respectively (note, that st and ct are the nominator
and the denominator of the formula for the tangent t, i.e. they are di�erent from c and
s of the rotation). These factorized rotations result in a square root free or a square
root and division free factorized rotation, if the matrix elements of the matrices K0

pq

8 J. G�otze

and Z(k+1) can be computed without square roots in (2.12) and without square roots
and divisions in (2.13).

Now, the formula for the tangent of the rotation angle t = f(a(k)ij) =
st(a

(k)
ij

)

ct(a
(k)
ij

)
must

be adapted to the factorized representation by using a
(k)
ij =

y
(k)
ijp

z
(k)
i

z
(k)
j

, which is the

number description of the matrix elements a(k)ij according to (2.10). This yields

t = f(y
(k)
ij ; z

(k)
i ; z

(k)
j) =

st(y
(k)
ij ; z

(k)
i ; z

(k)
j)

ct(y
(k)
ij ; z

(k)
i ; z

(k)
j)

If st(y
(k)
ij ; z

(k)
i ; z

(k)
j) = s0t(y

(k)
ij ; z

(k)
i ; z

(k)
j) �

q
z
(k)
i z

(k)
j and the computation of

s0t(y
(k)
ij ; z

(k)
i ; z

(k)
j) and ct(y

(k)
ij ; z

(k)
i ; z

(k)
j) only requires additions and multiplications

the square root free rotation is de�ned by

K0

pq =

2
4 � s0

t�z
(k)
q

ct
1

1
s0

t�z
(k)
p

ct

3
5 ; z

(k+1)
p = z

(k)
q ��

z
(k+1)
q = z

(k)
p �� with � = �detK0

pq(2.14)

and the square root and division free rotation by

K0

pq =

"
�s0t � z(k)q ct

ct s0t � z(k)p

#
;

z
(k+1)
p = z

(k)
q ��

z
(k+1)
q = z

(k)
p �� with � = �detK0

pq(2.15)

This provides an easy scheme for deriving square root free or square root and division
free rotations from the formula for the tangent of the rotation angle (e.g. for the

Givens rotation, where t = a
(k)
pq =a

(k)
pp one obtains with a

(k)
ij =

y
(k)
ijp

z
(k)
i

z
(k)
j

that t =

y(k)pq

p
z
(k)
p z

(k)
q

y
(k)
pp z

(k)
q

; i.e. s0t = y
(k)
pq , ct = y

(k)
pp z

(k)
q for (2.14) and (2.15), respectively).

For all factorized schemes there is a problem with the growth of the matrix ele-
ments. To overcome this problem the scaling procedure of [14] can be applied to (2.14)
and (2.15), respectively. This scaling procedure bounds the growth of the elements

of the diagonal matrices Z(k), such that z
(k)
i 2 [0:5; 2] for all k. It only requires two

single shifts and four additions of exponents for scaling K0

pq .

2.4. Factorized ApproximateRotations. Square root free or square root and
division free JAs can be derived by combining the approximation and the factorization
of the rotations.

For the KAs the formula for the tangents of the rotation angles can be described
in an appropriate form only for KA2 and KA3. For KA1 a factorization without
square roots is not possible, since

tKA1 =
stKA1

ctKA1

=
sign

�
a
(k)
pp � a

(k)
qq

�
� a(k)pq���a(k)pq

���+ ���a(k)pp � a
(k)
qq

��� =

=
sign

�
y
(k)
pp z

(k)
q � y

(k)
qq z

(k)
q

�
� y(k)pq

q
z
(k)
p z

(k)
q���y(k)pq

���qz
(k)
p z

(k)
q +

���y(k)pp z
(k)
q � y

(k)
qq z

(k)
q

��� =
s0tKA1

q
z
(k)
p z

(k)
q

ctKA1

Parallel Jacobi/Kogbetliantz Algorithms 9

Although stKA1 = s0tKA1

q
z
(k)
p z

(k)
q holds, the computation of ctKA1 requires a square

root operation. For KA2 and KA3 one obtains

tKA2 =
stKA2

ctKA2

=
a
(k)
pq

a
(k)
pp � a

(k)
qq

=

=
y
(k)
pq

q
z
(k)
p z

(k)
q

y
(k)
pp z

(k)
q � y

(k)
qq z

(k)
q

=
s0tKA2

q
z
(k)
p z

(k)
q

ctKA2

tKA3 =
stKA3

ctKA3

=

�
a
(k)
pp � a

(k)
qq

�
� a(k)pq�

a
(k)
pq

�2
+
�
a
(k)
pp � a

(k)
qq

�2 =

=

�
y
(k)
pp z

(k)
q � y

(k)
qq z

(k)
q

�
� y(k)pq

q
z
(k)
p z

(k)
q�

y
(k)
pq

�2
z
(k)
p z

(k)
q +

�
y
(k)
pp z

(k)
q � y

(k)
qq z

(k)
q

�2 =
s0tKA3

q
z
(k)
p z

(k)
q

ctKA3

such that square root free Jacobi rotations are obtained by (2.14) and square root
and division free Jacobi rotations by (2.15).

For the NAs di�erent formulae for the tangent are required in dependence of the
value of j�J j, whereby it must be possible to describe each formula in an appropriate
form. The formula for j�J j < 1 of NA1 enables no square root free factorization and
therefore NA1 likewise not. All other NAs (NA2{5) are composed of KA2, KA3 and
t1 = sign(�J). Therefore, the remaining problem, for deriving square root free or
square root and division free Jacobi rotations for the NA2{5 is that t1 = sign(�J)
cannot be factorized such that square roots are avoided.

In order to overcome this problem the approximation for the �rst cases of NA2{5,
i.e. t1 = sign(�J), is replaced by the following approximation:

tf1 = sign(�J) � � �
q
z
(k)
p z

(k)
q(2.16)

With s0tf1 = � � sign(�J) and ctf1 = 1 (2.14) and (2.15) yield the corresponding

factorized rotations. Since the scaling procedure guarantees z(k)i 2 [0:5; 2] for all k,
jtf1j 2 [0:5; 2] holds. Since, this approximation tf1 is only used for j�J j < b (e.g.
b = 0:5 for NA2), the following bounds for the maximal value of jdJ j can be obtained:

jdJ (tf1; �J)j � 0:6 (� = 1)(2.17)

jdJ (tf1; �J)j � 1=3 with

8><
>:

� = 0:5 if z
(k)
p z

(k)
q > 2

� =
p
2 if z(k)p z

(k)
q < 0:5

� = 1 otherwise

(2.18)

(2.18) requires additional comparisons for determing �. However, these comparisons
can be included, if they do not delay the data ow of the processor array (i.e. if the
other formulae of the approximation are more complex, e.g. KA3). Furthermore, for
NA4 and NA5 the di�erence between jdJ jmax = 0:25 for j�J j > b and jdJ jmax for
j�J j < b is reduced (1=3 instead of 0:6).

10 J. G�otze

Although jtNAij ! 1 for j�J j ! 0 no longer holds, the NA2{5 with tf1 instead of t1
exhibit the same favourable properties as the NA2{5 of section 2.2, since jdJ jmax � 1
still holds and the approximation is still better than the KAs. The last two columns
of Table 2.2 and Table 2.3 show the required number of sweeps of the square root and
division free versions of NA4 and NA5. The required number of sweeps is about the
same as for the non{factorized forms of NA4 and NA5.

Finally the comparison for determing the di�erent cases, i.e. 1=2j�J j = j�J j � b,
must also be referred to the factorized scheme:

j�J j � b,
�
y(k)pq

�2
z(k)p z(k)q � b2

�
y(k)pp z

(k)
q � y(k)qq z

(k)
p

�2
(2.19)

Thus, the JAs based on the approximate rotation schemes, which are suitable
for the factorized rotation schemes (KA2,KA3,NA2{5 with (2.17) or (2.18)), can be
implemented requiring only f+; �;�g and f+; �g, respectively. At the end of the JA
(k = kend) the results must be refactorized. The eigenvalues are obtained by �i =

y
(kend)
ii =z

(kend)
i , which requires n divisions. The eigenvectors require no refactorization.

They are merely not normalized but the square of their lenght is contained in Z(kend).
Since the refactorization is only required at the end of the JA, the corresponding
operations can be transferred to the host computer and must not be implemented on
the multiprocessor array.

2.5. Comparison. Since the evaluation of the rotations is a more complex task
than the pre- and postmultiplication of the rotations, which requires (8�; 16�) for the
two 2 � 2 matrix multiplications, the hardware requirements and the data pulse fre-
quency of a regular (e.g.systolic) processor array are determined by the computational
cost for the evaluation of the rotation.

In Table 2.4 the required operations for the evaluation of the di�erent Jacobi rota-
tions are shown. For the approximate rotations, which require di�erent cases, the case
with the greatest computational cost is indicated and the required operations for this
case are speci�ed. Since in general the operations f�;pg are (much) more expensive
than the operations f�; �g, the number of the former operations is minimized for all
rotations. Therefore, instead of computing t = st=ct and then (c; s) with t according
to (2.6), the parameters (c; s) are computed with ct and st as follows:

c =
1p

c2t + s2t
, s = st � c(2.20)

(e.g. computing the exact rotation according to (2.5),(2.6) requires (4�; 4�; 3�; 2p)
[25] while using (2.20) only requires (4�; 5�; 2�; 2p)). The exponent operations for
the scaling of the factorized schemes are not speci�ed. We assume, that the processors
contain a simple unit for the exponent manipulations (single shifts and additions),
which can be executed in parallel to the other operations.

In a parallel implementation the number of sweeps N is predetermined [6, 3, 4]. If
the evaluation of an approximate rotation requires ta time, while the exact evaluation
requires te time with ta = h � te (h < 1) and if only a few more sweeps are required
for the approximate scheme, i.e. N + N1 sweeps instead of N sweeps, then the
time consumption of one sweep is reduced from Te = (n � 1)te to Ta = (n � 1)ta
and the overall time consumption is TAA = (N + N1)nta = (N + N1)nhte for the
algorithm with approximate rotations instead of TEA = Nte for the algorithm with
exact rotations. Obviously, TAA < TEA holds, if h(N + N1) < N holds. For random
matrices we can set N1 = 0 for NA1, NA4 and NA5, such that TAA = hTEA holds.

Parallel Jacobi/Kogbetliantz Algorithms 11

Table 2.4

Required operations of the di�erent Jacobi rotations

rotation required operations

exact 4� 4 � 2� 2
p

KA1 3� 3 � 2� 1
p

KA2 2� 3 � 2� 1
p

KA3 3� 4 � 2� 1
p

KA4 5� 7 � 2� 1
p

KA5 3� 3 � 2�
NA1 (case 1) 4� 6 � 2� 1

p
NA2 (case 2) 2� 3 � 2� 1

p
NA3 (case 2) 3� 4 � 2� 1

p
NA4 (case 2) 2� 4 � 2� 1

p
NA5 (case 3) 3� 4 � 2� 1

p
� p free
KA2,NA2 2� 7 � 1�

NA4 2� 8 � 1�
KA3,NA3,NA5 3� 12 � 1�
� p and � free

KA2,NA2 2� 8�
NA4 2� 9�

KA3,NA3,NA5 3� 12�

Even, if a few more sweeps are needed with the approximate scheme | e.g. in the
case of clusters of eigenvalues (N1 = 4 is the worst case in Table 2.2) or in the case of
simpler approximations (N1 � 2 for NA2) | we have TAA < TEA, if h(N +N1) < N .
For example, if we set N = 10 [3] and N1 = 2 (N1 = 4) TAA < TEA holds if h < 0:83
(h < 0:71). Therefore, the choice of the computation scheme for the evaluation of
the rotation strongly depends on the value of h for the particular computer and the
particular implementation (see e.g. [25]; h = 0:566 for KA2 (NA2) on the DAP).

The square root and division free schemes only require f�; �g to be implemented
in all processor cells. They enable a very regular (all processors need the same hard-
ware) parallel implementation. Therefore, these algorithms are particularly suited for
ASIC{based processor arrays. Furthermore , the operations f�; �g can be implemen-
ted with a time complexity of O(log2w) [31], while the operations f�;

pg can only
be implemented with a time complexity of O(w), where w is the wordlenth of the
data. Clearly, NA4 and NA5 are used for a square root and division free implementa-
tion, since they exhibit the highest accuracy of the approximation requiring the same
amount of f�; �g as the other worse approximations.

3. Triangular Kogbetliantz Algorithm.

3.1. Basic Algorithm. The TKA works by applying a sequence of two-sided or-
thogonal transformations to the upper triangular matrixR obtained by a preparatory
QR-decomposition A = QR of the arbitrary m� n matrix A:

A(0) := R

For k = 0; 1; 2; : : :

A(k+1) = QpqA
(k)Vpq(3.1)

Except for the preparatory QR-decomposition, the only di�erence between the
TKA and the JA is, that the orthogonal n � n rotation matrices multiplied to the
left and right of A(k) are de�ned by di�erent rotation parameters. Qpq is de�ned by
c� = cos �k, s� = sin�k and Vpq by c	 = cos	k, s	 = sin	k.

12 J. G�otze

In order to preserve the upper triangular structure of A(k) for all k

a(k+1)qp = �c�s	a(k)pp + c�c	a
(k)
pq + s�c	a

(k)
qq := 0(3.2)

must be met. For a maximal reduction of the o�{diagonal quantity

a(k+1)pq = �s�c	a(k)pp � s�s	a
(k)
pq + c�s	a

(k)
qq = 0(3.3)

must be full�lled. From (3.2) and (3.3) the following exact formulae for computing
Qpq, Vpq are obtained:
Case 1 (t� = tan�k is computed �rst; t	 = tan	k = f(t�))

�K1 =

�
a
(k)
pp

�2
�
�
a
(k)
qq

�2
+
�
a
(k)
pq

�2
2a

(k)
qq a

(k)
pq

(3.4)

t� =
sign(�K1)

j�K1j+
p
1 + �2K1

(3.5)

t	 =
a
(k)
qq t� + a

(k)
pq

a
(k)
pp

(3.6)

Case 2 (t	 is computed �rst; t� = f(t))

�K2 =

�
a
(k)
qq

�2
�
�
a
(k)
pp

�2
+
�
a
(k)
pq

�2
2a

(k)
pp a

(k)
pq

(3.7)

t	 =
�sign(�K2)

j�K2j+
p
1 + �2K2

(3.8)

t� =
a
(k)
pp t	 � a

(k)
pq

a
(k)
qq

(3.9)

In both cases (c�; s�) and (c	; s) are obtained from t� and t	 according to (2.20).

With these formulae a(k)ii > 0 (i = 1; : : : ; n) holds for all k, if a(0)ii > 0 (i = 1; : : : ; n)
holds, which can always be obtained by the initial QR-decomposition [6].

3.2. Approximate Rotations. For a reduction of the o�{diagonal quantity it

is not necessary to satisfy a
(k+1)
pq := 0, but it is su�cient that

ja(k+1)pq j = jdK jja(k)pq j with 0 � jdKj < 1

holds. If a corresponding approximate formula is used for t� (3.5) and t	 (3.8), one

has to distinguish between using case 1 if a(k)qq � a
(k)
pp and using case 2 if a(k)pp < a

(k)
qq in

order to guarantee jdKj < 1 (for the exact scheme using one case is su�cient, but the

test a
(k)
qq � a

(k)
pp is also necessary for a stable computation [20, 6]). Obviously, (3.5) is

the same formula for computing t� with �K1 as (2.5) for computing tex with �J (the
same holds for (3.8) and �K2). Therefore, all the approximations of Table 2.1 can
also be applied to the TKA (i.e. to (3.5) and (3.8)). For (3.6) and (3.9) no further
approximations are possible, since these formulae are obtained from (3.2), which must
be met exactly in order to preserve the triangular structure.

We will not repeat the numerical examples of the JA for the TKA, since the
following theorem shows: If the same approximation is used for the TKA and the JA,

Parallel Jacobi/Kogbetliantz Algorithms 13

the TKA yields a better approximation than the JA (compare Fig. 6.1 and Fig. 6.2
in [6]). In [6] the result of the following theorem is only shown for the special case
j�j = 1=2j� j ! 1 in order to show that jdK(j� j ! 1)j < 1 is guaranteed for the
TKA, while it is not for the JA (note, that the NAs guarantee jdj � 1 anyway).

Theorem 3.1. If the same approximation is used for the TKA (for t� and �t	,
respectively) and the JA (for tex), then for j�Kij = j�J j (i = 1; 2)

jdK(�Ki)j = jrj � jdJ(�J)j

holds with jrj < 1 and therefore

jdK jmax < jdJ jmax

Proof. We assume that ja(k)pq j > 0, since otherwise no transformation (3.1) is
executed.
Case 1 (a(k)qq � a

(k)
pp):

With sign(�K1) = sign(t�) and (3.6) one obtains from (3.3):

jdK (�K1)j =
����1� 2 j�K1j jt�j � t2�

1 + t2�

���� �
�����a

(k)
qq � c	
a
(k)
pp � c�

�����
Since the same approximation is used for the TKA and the JA we have for each
j�K1j = j�J j:

jdK (�K1)j = jrj � jdJ (�J)j

with jrj =
����a(k)qq �c	

a
(k)
pp �c�

����. It remains to show that jrj < 1 holds, i.e. since all variables of

jrj are positive
�
a(k)qq

�2
c2	 <

�
a(k)pp

�2
c2�

With cos2' = (1 + tan2 ')�1 we have

�
a(k)qq

�2 �
1 + t2�

�
<
�
a(k)pp

�2 �
1 + t2	

�
and with (3.6)

�
a(k)pp

�2
�
�
a(k)qq

�2
+
�
a(k)pq

�2
+ 2a(k)qq a

(k)
pq t� > 0

Since a(k)qq > 0 holds the multiplication of this inequality with 1=2a(k)qq a
(k)
pq yields

�K1 + t� > 0 if a
(k)
pq > 0

�K1 + t� < 0 if a
(k)
pq < 0

Since sign(�K1) = sign(t�) these inequalities are equivalent to

�K1 > 0 if a
(k)
pq > 0

�K1 < 0 if a
(k)
pq < 0

14 J. G�otze

With (3.4) and a
(k)
qq > 0 this is again equivalent to

�
a(k)pp

�2
�
�
a(k)qq

�2
+
�
a(k)pq

�2
> 0

which is guaranteed by a
(k)
pp � a

(k)
qq . This completes the proof for case 1.

Case 2 (a
(k)
pp < a

(k)
qq):

With (3.9) and sign(�K2) = �sign(t) one obtains from (3.3):

jdK (�K2)j =
����1� 2 j�K2j jt	j � t2	

1 + t2	

���� �
�����a

(k)
pp � c�

a
(k)
qq � c	

�����
Therefore, jdK (�K2)j = jrj � jdJ (�J)j holds for each j�K2j = j�J j with jrj < 1, if�
a
(k)
pp

�2
c2� <

�
a
(k)
qq

�2
c2	. Then, with (3.9), a(k)pp > 0, sign(�K2) = �sign(t) and (3.7)

the rest of the proof is identical to case 1.

3.3. Factorized Approximate Rotations. For the TKA it is also possible to
derive square root free and square root and division free rotations. The factorization

A(k) =
h
Z(k)

i
�1=2

Y(k)
h
X(k)

i
�1=2

0
@a(k)ij =

y
(k)
ijq

z
(k)
i x

(k)
j

1
A(3.10)

must be used and it must be distinguished between approximating t� (case 1) or
t	 (case 2). As for the exact formula the corresponding approximate formulae are
only distinguished by the sign except for t�1 = sign(�K1) and t	1 = �sign(�K2) for

which t�f1 = sign(�K1)�

q
z
(k)
p z

(k)
q and t	f1 = sign(�K2)�

q
x
(k)
p x

(k)
q must be used,

respectively. The methods of section 2 can be applied to the TKA and the square
root and division free rotations (square root free rotations in a similiar way by using
(2.14) instead of (2.15) in the sequel) can be obtained as follows:
Case 1:
Using (3.10) and a suitable approximation t�A for the exact t� (3.5), the approximate
formula t�A can be written as:

t�A =
s�A
c�A

=
s0�A

q
z
(k)
p z

(k)
q

c�A
(3.11)

whereby the computation of s0�A = f(y
(k)
ij ; z

(k)
i ; x

(k)
j) and c�A = f(y

(k)
ij ; z

(k)
i ; x

(k)
j)

(i; j 2 fp; qg) requires only additions and multiplications. Then, (2.15) yields the
rotation matrix

~Q0

pq =

"
�s0�Az

(k)
q c�A

c�A s0�Az
(k)
p

#
;

z
(k+1)
q = z

(k)
p ���

z
(k+1)
p = z

(k)
q ���

with �� = �det ~Q0

pq

With (3.10) and (3.11) one obtains for t	 (3.6):

t	 =
s	
c	

=
a
(k)
qq t�A + a

(k)
pq

a
(k)
pp

=

�
y
(k)
qq z

(k)
p s0�A + y

(k)
pq c�A

�q
x
(k)
p x

(k)
q

y
(k)
pp x

(k)
q c�A

=
s0	

q
x
(k)
p x

(k)
q

c	

Parallel Jacobi/Kogbetliantz Algorithms 15

and thereby

~V0

pq =

"
�s0	x(k)q c	

c	 s0	x
(k)
p

#
;

x
(k+1)
q = x

(k)
p ��	

x
(k+1)
p = x

(k)
q ��	

with �	 = �det ~V0

pq

Case 2:
The factorized rotations can be derived in a similiar way exchanging the role of t�
and t	.

3.4. Summary. In summary, it is clear why we started with the JA and ex-
tended the results to the TKA afterwards. All results for the JA (approximations,
derivation of factorized rotations) can be extended to the TKA. Particularly, the mea-
sure for the accuracy of the approximations for the TKA, i.e. jdK j, can be derived
from the respective measure for the JA, i.e. jdJ j, where jdKj = jrj � jdJ j holds with
jrj < 1.

4. Convergence. The global convergence of the JA and the original KA has
already been proved by Forsythe and Henrici [10] including approximate rotation
schemes. The ultimate quadratic convergence of the JA has been proved by Wilkinson
[32] and Paige and van Dooren [28] have extended this result to the original KA.
However, for the original KA there are problems with the global and (in the case
of clusters of eigenvalues) the ultimate quadratic convergence. These problems are
completely removed by the TKA [20, 5]. Furthermore, the TKA is advantageous for
a parallel (and a sequential) implementation. The global convergence of the TKA has
been proved by Hari and Veseli�c [20] and by Fernando [8] and the ultimate quadratic
convergence by Hari [21] and Charlier and van Dooren [5]. All these proofs of the TKA
are established for the exact scheme. Although the convergence of the approximate
schemes is used in [25, 6] (based on the results of [10]), no explicit proofs have been
published yet (e.g. the proof of Fernando [8] cannot be extended to approximate
schemes).

In [13] the global and the ultimate quadratic convergence of the TKA and the JA
is proved for the approximate schemes. The known results for the exact schemes are
obtained as special cases (d = 0). Furthermore, for the �rst time the presented proofs
hold for the TKA as well as for the JA. This is achieved by assuming that during the
TKA and the JA the matrices remain 'essential triangular' [21]. Although for the JA

A(k)T = A(k) actually holds, we only use one essential triangular part, such that the
JA also proceeds as shown in Fig. 2.1.1 of [20] for the TKA.

In the following the theorems concerning the global and the ultimate quadratic
convergence are given and the methods used for the proofs of these theorems are
briey outlined. For the details of these proofs see [13].

Theorem 4.1 (Global convergence). If 0 � jdj < 1 holds throughout the TKA
and the JA, then the column (and row) cyclic schemes of these algorithms are always
convergent.

Proof. The proof of this theorem is modeled after the proof of the global conver-

gence of the TKA with exact rotations [20]. We prove that
�
S(k+M)

�2 � cn
�
S(k)

�2
(M = n(n� 1)=2) with cn < 1 holds for all the di�erent algorithms presented in this
paper, i.e for the TKA/JA with exact/approximate rotations (see [13]).

Theorem 4.2 (Ultimate quadratic convergence). Let

j�i � �jj � 2� (i 6= j) (distinct singular-/eigenvalues)(4.1)

16 J. G�otze

and suppose we have reached the stage r, where

S(r) <
�

4
(4.2)

then for some (k > r)

S(k+M) � p
1� d2max

�
�
S(k)

�2
�

+O

�h
S(k)

i3�
(4.3)

holds where = 7=6 for the TKA and = 1 for the JA.
Proof. The proof of this theorem (see [13]) follows the proofs of Paige and van

Dooren [28] (TKA) and Wilkinson [32] (JA) (xi := a
(i)
pq) with jxi+1j = jdixij (instead

of xi+1 = 0).
In the case of clusters of singular values (eigenvalues) the proofs for the approxi-

mate schemes are completely identical to the proofs for the exact scheme of [22, 5, 21].
Only the bound (4.3) for the case of distinct singular/eigenvalues must be used instead
of the bound for the exact scheme.

5. Application in Signal Processing. By computing the singular value de-
composition (SVD) of a data matrix it is possible to extract the signal and noise sub-
spaces of the data. The knowledge of these subspaces is essential in many application
�elds, e.g. DOA{estimation (ESPRIT, MUSIC), state{space system identi�cation. In
practice, where the subspaces are usually time varying, it is even more important to be
able to track these subspaces. Therefore, in recent years di�erent subspace tracking
algorithms have been proposed. These algorithms are based on the rank revealing
QR{decomposition (QRD) [2], the Lanczos algorithm [7] or the SVD{updating algo-
rithm [9, 26], where the SVD{updating algorithms are favourable in virtue of a parallel
implementation. The SVD{updating algorithm works as follows: At time step k a
new meassurement vector is incorporated in the upper triangular matrix R[k�1] by a
QRD{update resulting in R[k]. Then, the SVD of R[k] is computed using the TKA.

The main result of [9, 26] is that it is usually su�cient to execute only one sweep
[9], or even only a fraction of one sweep [26] (only the elements of the �rst subdiagonal
of R[k] are annihilated) of the TKA after each QRD-update. Since the approximation
of the rotations is a marginal approximation compared to the approximation of the
TKA (i.e. executing only one sweep or a fraction of one sweep), the use of approximate
rotations yields essentially the same results with respect to tracking capability as using
exact rotation.

To illustrate this the example of Ferzali and Proakis [9] is used, i.e. 400 sample
points of a signal composed of 3 sinusoids:

s(k) = 2 cos(2� � 0:15k) + 2 cos(2� � 0:2k) + 2 cos(2� � f � k) + u(k)

whereby f jumps from 0.35 to 0.45 at k = 200 and u(k) is Gaussian white noise
(SNR = 20 dB). Data vectors with dimension m = 7 are formed from the samples.
Fig. 5.1 shows e(k) = ksv(k) � sve(k)k2 vs. k. sve(k) is a vector which contains the
exact singular values of the k�m data matrix X(k) available at time k. sv(k) is the
vector which contains the singular values as obtained by the SVD{updating algorithm.
Here, only the �rst subdiagonal of R[k] is annihilated by the TKA, i.e only a part of a
complete sweep of the TKA is executed after each QRD{update. Obviously, tracking
the singular values using the approximation KA2 (Fig. 5.1 b) works as well as using
exact rotations (Fig. 5.1 a).

Parallel Jacobi/Kogbetliantz Algorithms 17

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

k

e
(k

)

(a)

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

k

e
(k

)

(b)

Fig. 5.1. e(k) vs k using (a) exact rotations and (b) the approximate rotation KA2.

Therefore, an application speci�c processor array for subspace tracking can be
derived, which exhibits all advantages of the approximate factorized schemes, while
the slight increase concerning the required number of sweeps is marginal (in many
practical applications even a fraction of a sweep is su�cient).

6. Concluding Remarks. In this paper new JAs and TKAs were presented
by combining methods for modifying orthogonal rotations. Suitable approximate
rotations were described in factorized form in order to gain square root free or square

18 J. G�otze

root and division free rotations for the JA and the TKA.

In summary, we recommend the use of approximate schemes for the TKA as well
as the JA, since

� the new approximations exhibit better properties and require less compu-
tational cost than the known approximations. Even for the JA the required
number of sweeps of NA4 and NA5 is about the same as for the exact scheme.
The TKA always performs better than the JA, since jdKjmax < jdJ jmax

(Theorem 3.1)
� the convergence problems (for the JA) of KA2 and KA3 are removed by the
new approximations (jdj � 1 is guaranteed).

� the use of approximate rotations enables the derivation of square root free or
square root and division free factorized rotations, which is not possible for
the exact scheme.

� for a parallel implementation the speedups gained by using approximate ro-
tations and by using factorized rotations can be combined. Furthermore, the
hardware requirements are signi�cantly decreased (e.g. the square root and
division free versions of the JA and the TKA can e�ciently be implemen-
ted on an array of application speci�c processors, e.g. Transputers or DSPs,
which contain only f�; �g as fast hardware).

� for a VLSI-implementation of a systolic array executing the TKA and the JA
only f�; �g must be implemented in all processor cells (ASICs). In contrary
to the operations f�;pg, which require O(w) time, the operations f�; �g can
be implemented needing O(log2w) time [31]. This enables a further speedup
for the square root and division free algorithms. The approximate rotation
scheme can also be combined e�ciently with the CORDIC scheme in order
to obtain an e�cient VLSI-implementation based on the CORDIC algorithm
[17, 18].

� the approximate factorized schemes are particularly useful in signal proces-
sing applications (e.g. subspace tracking), since the approximate rotations
perform as well as exact rotations for many practical applications.

Acknowledgement. This work was performed while the author was with the
Department of Computer Science, Yale University, New Haven funded by a grant of
the German National Science Foundation. Thanks are to Prof. I. Ipsen for giving
me the opportunity to spend a wonderful year at Yale. Thanks are also to Prof. A.
Bojanczyk, who brought the use of approximate rotations [6, 25] to the attention of
the author.

REFERENCES

[1] J. L. Barlow and I. C. F. Ipsen, Scaled Givens rotations for the solution of linear least
squares problems on systolic arrays, SIAM J. Sci. Stat. Comput., 5 (1987), pp. 716{733.

[2] C. H. Bischof, On updating signal subspaces, IEEE Trans. on Signal Proc., 40 (1992), pp. 96{
105.

[3] R. P. Brent and F. T. Luk, The solution of singular value and symmetric eigenvalue problems
on multiprocessor arrays, SIAM J. Sci. Stat. Comput., 6 (1985), pp. 69{84.

[4] R. P. Brent, F. T. Luk and C. van Loan, Computation of the singular value decomposition
using mesh connected processors, J. VLSI Computer Systems 3, (1985), pp. 242{270.

[5] J.-P. Charlier and P. van Dooren, On Kogbetliantz's SVD algorithm in the presence of
clusters, Linear Algebra & Applic. 95, (1987), pp. 135{160.

[6] J.-P. Charlier, M. Vanbegin and P. van Dooren, On e�cient implementations of Kog-
betliantz's algorithm for computing the singular value decomposition, Numer. Math., 52

Parallel Jacobi/Kogbetliantz Algorithms 19

(1988), pp. 279{300.
[7] P. Comon and G. H. Golub, Tracking a few singular values and vectors in signal processing,

Proc. IEEE, 78 (1990), pp. 1327{1343.
[8] K. V. Fernando, Linear convergence of the row cyclic Jacobi and Kogbetliantz methods, Nu-

mer. Math., 56 (1989), pp. 73{91.
[9] W. Ferzali and J. G. Proakis, Adaptive SVD algorithm for covariance matrix eigenstructure

computation, IEEE Int. Conf. on Acoust., Speech & Signal Processing, Toronto 1990,
pp. 2615{2618.

[10] G. E. Forsythe and P.Henrici, The cyclic Jacobi method for computing the principal values
of a complex matrix, Trans. Amer. Math. Soc., 94 (1960), pp. 1{23.

[11] W.M. Gentleman, Computation of Givens transformations without square roots, J. Inst.
Maths. Applies, 12 (1973), pp. 329{336.

[12] G. H. Golub and C. van Loan, Matrix Computations, Second ed., The John Hopkins Uni-
versity Press, Baltimore, MD, 1989.

[13] J. G�otze, On the parallel implementation of Jacobi's and Kogbetliantz's algorithm, Research
Report, Department of Computer Science, Yale University, New Haven, CT, 1991, (pre-
print).

[14] J. G�otze and U. Schwiegelshohn, A square root and division free Givens rotation for solving
least squares problems on systolic arrays, SIAM J. Sci. Stat. Comput., 4 (1991), pp. 800-
807.

[15] , VLSI-suited orthogonal solution of systems of linear equations, J. Parallel & Distributed
Comput., 11 (1991), pp. 276{283.

[16] J. G�otze, M. Ali and U. Schwiegelshohn, E�cient orthogonal matrix decompositions for
digital signal processing, Proc. URSI Int. Symp. on Signals, Systems and Electronics, Er-
langen 1989, pp. 803{806.

[17] J. G�otze, S. Paul, M. Sauer, An e�cient Jacobi{like algorithm for parallel eigenvalue com-
putation, IEEE Trans. on Computers, 42 (1993), pp. 1058{1065.

[18] , A CORDIC{Based Jacobi{like Algorithm for Eigenvalue Computation, Proc. IEEE Int.
Conf. on Acoust., Speech, Signal Processing, Minneapolis 1993, Vol. 3, pp. 296{299.

[19] E.R. Hansen, On cyclic Jacobi methods, J. Soc. Indust. Appl. Math., 2 (1963), pp. 448{459.
[20] V. Hari and K. Veseli�c, On Jacobi methods for singular value decomposition, SIAM J. Sci.

Stat. Comput., 5 (1987), pp. 741{754.
[21] V. Hari, On the quadratic convergence of the serial singular value decomposition Jacobi me-

thods for triangular matrices, SIAM J. Sci. Stat. Comput., 6 (1989), pp. 1076{1096.
[22] H. P. M. van Kempen, On the quadratic convergence of the special cyclic Jacobi method,

Numer. Math., 9 (1966), pp. 19{22.
[23] F. T. Luk and H. Park, On parallel Jacobi orderings, SIAM J. Sci. Stat. Comput., 1 (1989),

pp. 18{26.
[24] F. T. Luk, A triangular processor array for computing singular values, Linear Algebra & Appl.,

77 (1986), pp. 259{273.
[25] J. J. Modi and J. D. Pryce, E�cient implementation of Jacobi's diagonalization method on

the DAP, Numer. Math., 46 (1985), pp. 443{454.
[26] M. Moonen, P. van Dooren and J. Vandewalle, A singular value decomposition updating

algorithm for subspace tracking, SIAM J. Matrix Anal. Appl., 4 (1992), pp. 1015{1038.
[27] W. Rath, Fast Givens rotations for orthogonal similarity transformations, Numer. Math., 40

(1982), pp. 47{56.
[28] C. C. Paige and P. van Dooren, On the quadratic convergence of Kogbetliantz's algorithm for

computing the singular value decomposition, Linear Algebra & Appl., 77(1986), pp. 301{
313.

[29] D. A. Pope and C. Tompkins,Maximizing functions of rotations { Experiments concerning the
speed of diagonalization of symmetric matrices using Jacobi's method, J. ACM, 4 (1957),
pp. 459{466.

[30] U. Schwiegelshohn and L. Thiele, A systolic array for cyclic{by{rows Jacobi algorithms, J.
Parallel Distrib. Comput., 4 (1987), pp. 334{340.

[31] J. Vuillemin, A very fast multiplication algorithm for VLSI implementation, Integration: the
VLSI J., 1 (1983), pp. 39{52.

[32] J. H. Wilkinson, Note on the quadratic convergence of the cyclic Jacobi process, Numer.
Math., 6 (1962), pp. 296{300.

[33] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

