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Abstract—Decoding of Turbo Codes requires buffer memories
to store the received values and the extrinsic information that is
exchanged between the constituent decoders. In this paper, the
effect of unreliable buffer memories on the decoding performance
is analyzed. The buffer is modeled as a discrete memoryless
channel, which introduces spatially independent and uniform bit
errors on the binary representation of the stored values. This
leads to a strong performance degradation if a conventional
Turbo decoding algorithm is employed. It is however shown
that suitable modification of quantizer, index assignment, and
of the transition metrics of the MAP algorithm can effectively
compensate for these errors.

I. INTRODUCTION

Iterative processing using for example Turbo Codes, Turbo

equalization or iterative demapping, is a common way to

improve the performance in baseband signal processing. Based

on exchanging reliabilities about the transmitted information,

these techniques usually require buffer memories to store

these reliabilities, in addition to a commonly adopted receive

buffer. It is known that the length of the processed blocks

is a governing factor for the performance gain of iterative

processing, which leads to large buffers, limited only by the

latency requirements of the transmission system. An example

is the Turbo decoding as specified in the Long Term Evolution

(LTE) mobile communication standard, where the decoder has

to support storage of up to 6144 reliability values in the form

of Log Likelihood Ratios (LLRs) in an LLR buffer [1].

Consequently in such a system, memory not only takes

a major amount of area in a hardware implementation. It

also strongly impacts the power consumption of the device.

Aggressive voltage scaling, i.e. scaling memory supply voltage

below the required threshold, has been suggested to reduce

power consumption of memory access [2]. It will, however,

lead to memory failures and distortions of the stored values.

Under a more general perspective, unreliable memory may

also be the result of process-, time- or environment-dependent

parameter variations of the involved integrated circuits [3].

In these cases, a co-design of the involved signal pro-

cessing is required to compensate for the resulting memory

failures. Under the assumption that the memory errors are

uniformly and independently distributed, this co-design has

been demonstrated for Viterbi decoding and iterative decoding

based on a modified branch metric in [4] and [5], respectively.

With similar preconditions, the authors have described a fault

tolerant Turbo equalizer in [6]. In these works, the focus is

on customizing the trellis transition probabilities under the

assumption that quantized values are stored using a two’s

complement representation. Then a convenient analytical ex-

pression of the transition probability can be found and the

effect of unreliable memory can be compensated in part.

In this paper, the problem of Turbo decoding in case of

unreliable receive and LLR buffers is considered. Unreliable

buffers are modeled as discrete memoryless channels (DMCs),

such that the combination of transmission channel and quan-

tizer and consecutive buffer forms a cascade of two DMCs.

For the distribution of the error introduced by the buffer, we

assume spatially uniformly and independently distributed bit

errors on the bit representation of the quantized values. Then

it can be shown that the so called memory channel, which

represents the unreliable buffer memory, is symmetric and an

analytical expression for the capacity can be directly given.

The memory channel results in a severe degradation of de-

coding performance of a conventional Turbo decoder, which is

mainly caused by the irregularly distributed (i.e. non-Gaussian)

values at the decoders’ input. The proposed fault tolerant

(FT) Turbo decoder therefore employs a modified transition

metric based on the PMF of the cascaded DMCs. It is further

shown that besides a proper formulation of the transition

metric, quantizer properties and index assignment, i.e. the

mapping of quantization values to bit vectors, also influence

the decoding performance. In order to find suitable settings

for received values and LLRs, the mutual information of the

decoder’s input and the extrinsic information transfer (EXIT)

characteristics of the decoder are employed as optimization

criteria, respectively. Note that, while [5] also analyzes an

error-resilient Turbo decoder, the impact of quantizer, index

assignment and LLR buffer is not considered in their work.

II. PROBLEM DESCRIPTION

A. Turbo Coded Transmission

In the following, we assume a transmission system as

shown in Fig. 1. A binary information sequence u = {u} is

encoded using two parallel concatenated recursive systematic

convolutional codes. The code rate of the resulting Turbo

coded data is denoted by R. BPSK modulation of the coded

bits v results in the equally probable modulation symbols

x = 2v − 1, which are weighted by a gain µ before

transmission. The communication channel is modeled by an

additive white Gaussian noise (AWGN) channel, such that the

received values r̃ can be written as

r̃ = µx+ n, where n ∼ N (0, σ2), (1)

where σ2 denotes the noise power of the channel. The chan-

nel is characterized by its signal-to-noise ratio Eb/N0 =
10 log10 µ

2/2Rσ2.

At the receiver side, a demapping is accomplished in this

case (BPSK) by scaling the received values with LC = 2µ/σ2.

A subsequent scaling using a parameter γ > 0 is required

to match the resulting LLRs to the quantizer. In this work

quantization is done using an Nr bit uniform quantizer, where

the reconstruction values r ∈ Qr are defined as the set Qr,

Qr = {−2Nr−1 + k : 0 ≤ k < 2Nr}. (2)

The probability mass function (PMF) P (r|x) of the quan-

tized values r conditioned on the original symbols x can be
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Fig. 1. Transmission of Turbo coded data over an AWGN channel with cascaded unreliable receive buffer.
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where µr = LCγµ and σ2
r = L2

Cγ
2σ2 are gain and variance

of the bimodal Gaussian distribution at quantizer input.

After quantization, indices i, 0 ≤ i < 2Nr are assigned

to the quantized values r. The index assignment (IA) is

represented by Πr(·), which defines the one-to-one mapping

between the elements of Qr and the indices i. The binary

Nr-bit representation of i = Πr(r) is written to the buffer.

Given the assumption that the buffer is unreliable and

that bit errors are spatially independently and uniformly dis-

tributed, it can be modeled as a binary symmetric channel with

bit error probability pe. Then the conditional PMF of reading

an index j if i has been written is given as

P (j|i) = pdH(i,j)
e (1− pe)

Nr−dH(i,j), (4)

where dH(i, j) denotes the Hamming distance between i and

j. Finally, the reverse index assignment r = Π−1
r (j) re-assigns

quantization values r. The consecutive Turbo decoder then

delivers an estimate of u based on r, taking into account the

scaling parameters LC and γ.

B. Capacity of Memory Channel

The combination of communication channel with successive

quantizer and memory channel can be seen as a cascade of

two DMCs, as shown in Fig. 2. For perfectly operating buffer

memory (pe = 0), the restored values r match the written

values r (Fig. 2(a)). However, in case of unreliable buffer

memory, (pe > 0), r and r do not necessarily match, as

shown in Fig. 2(b). In this case the buffer causes an additional

distortion.

This distortion depends on the bit error probability pe and

may be characterized by analyzing the capacity Cm of the

memory channel. The capacity is given as

Cm = max
P(r)

I(R;R), (5)

where P(r) is a distribution of input values, and I(R;R) is the

average mutual information (MI) between the discrete random

variables R and R representing r and r, respectively. Taking

into account that the 2Nr ×2Nr transmission matrix P(r|r) =
[P (r|r)] can be written as

P(r|r) = ΠP(j|i)ΠT with P(j|i) = [P (j|i)], (6)

r r
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Fig. 2. Transmission channel and buffer memory as a cascade of two DMCs.

where Π is a permutation matrix reflecting the index assign-

ment, it can be seen that the memory channel is symmetric.

In this case the MI is maximized for uniform P(r) [7] and

the capacity can be directly expressed as

Cm = H(R)−H(R|R)

= Nr +

Nr
∑

n=0

(

Nr

n

)

pne (1− pe)
Nr−n ld pne (1− pe)

Nr−n.

Fig. 3 illustrates Cm as a function of the error probability pe
for different Nr. For example it can be seen that for pe = 0.1
the relative capacity loss is around 50% for all Nr.

Note that uniform P(r) not only maximizes I(R;R), due to

symmetry of the channel, but also I(R̃;R) [8]. In terms of an

optimal EXIT chart entry point we are however interested in

optimizing I(X;R) rather than I(R̃;R), as will be discussed

in Sec. III-B.

III. FAULT TOLERANT DECODING

The objective is to make the Turbo decoder resilient against

the additional errors introduced by the memory channel. This

is achieved by

• modifying the Turbo decoder itself, such that the MAP

algorithm is adapted to the PMF P (r|x) of the cascade

of Gaussian transmission channel and memory channel,

• analyzing the impact of scaling factor γ and IA of

received values and IA of extrinsic LLRs on the EXIT

characteristics of the decoding process.

A. MAP Algorithm

A key observation is that the probability distribution of the

memory output r conditioned on x is no longer Gaussian

shaped if pe > 0: Depending on the employed IA, P (r|x)
results from superposition of 2Nr PMFs corresponding to the

2Nr different possible error patterns. As an example, possible

resulting PMFs at memory input and output are shown in Fig.

4. The PMFs P (r|x) are shown for two different IAs, namely

natural binary coding (NBC, Π = I) and a randomly selected

IA (RND, Π is a random permutation of I). Clearly P (r|x) is

no longer Gaussian shaped, and in case of the RND IA even

non-symmetric.
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Fig. 4. PMFs at memory input (P (r|x), red) and output (P (r|x), black)
for Nr = 4, µ = 1, Eb/N0 = 1dB, γ = 1, pe = 0.1.

If Turbo decoding is implemented based on the MAP

algorithm, then this observation suggests to implement the

MAP algorithm based on the transition probability of the

cascade of communication channel and memory channel, and

not on the conventional metric, which is based on the Gaus-

sian assumption. Given the model from Sec. II, the required

conditional PMFs for x = ±1 can be computed following

P(r|x) = ΠP(i|j)ΠT
P(r|x), (7)

where P(r|x) = [P (r|x)] is the resulting 2Nr ×2 transmission

matrix of the two cascaded DMCs.

Besides the receive buffer, considered until now, the Turbo

decoder also requires a buffer to store the extrinsic LLRs λ̃
exchanged between the constituent decoders during iterations.

An unreliable LLR buffer is modeled similarly to the receive

buffer, as shown in Fig. 5: The input of the quantizer, i.e.

a constituent decoder’s output, conditioned on the systematic

part xs of x is modeled as consistently Gaussian distributed

with variance σ2
λ.

The quantizer uses Nλ = dλ + fλ bits and assigns recon-

struction values λ from the set

Qλ = {−2dλ−1 + k2−fλ : 0 ≤ k < 2Nλ}. (8)

Based on the IA Πλ, the binary representation of the index is

written to the buffer, and the restored value λ may differ from

the original value λ if pe > 0. The conditional PMFs P (λ|xs)
can be derived in the same way as for the received values.

Given this model, a suitable transition metric at time instant

t can be computed as

logP (r(t)s |xs) + logP (r(t)p |xp) + logP (λ
(t)
|xs), (9)

where half rate encoders are assumed, and r
(t)
s and r

(t)
p are

systematic and parity part of the received values, respectively,

and xs and xp denote systematic and parity parts of the current

trellis transition. The metric computation can be favorably

implemented using look-up tables (LUTs) for P (r|x) and

P (λ|x), where the LUTs can be directly addressed using the

indices of the restored values. Precomputing P (r|x) requires

knowledge of the noise power σ2 and error probability pe,

which we assume is known in the decoder. Similarly, precom-

puting P (λ|x) requires knowledge of σ2
λ (and pe), which has

to be estimated while writing λ into the buffer.

The MAP algorithms based on (9) is referred to as fault

tolerant MAP (FT MAP) in the following.
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Fig. 5. Extrinsic LLRs modeled as consistent Gaussian distributed values
with quantizer and consecutive unreliable buffer memory.

Note that an alternative way of implementing the MAP de-

coder for two’s complement based quantization using multiple

shuffled versions of the original PMF has been described in

[6]. In this case precomputing of a PMF LUT is not required.

B. EXIT Chart based Optimization

The FT decoder is supposed to exploit ”available infor-

mation“ in its input values r as well as possible. In terms

of Turbo decoding, the EXIT chart [9] is a convenient tool

to visualize the decoding characteristics: Firstly, convergence

behaviour is improved if the entry point into the chart is higher,

i.e. in our case if the ”available information“ measured as the

MI I(X;R) is as large as possible. This can be influenced

by adjusting γ and Πr. Secondly, the EXIT tunnel, i.e. the

distance between both decoder curves, should be as wide as

possible, and the point, where the generated extrinsic MI of a

constituent decoder matches its a priori MI, should be shifted

as high as possible. This can be accomplished by adjusting

Πλ.

1) Optimization of I(X;R): The MI I(X;R) is a function

of the PMF P (r|x),

I(X;R) =
1

2

∑

x=±1

∑

r

P (r|x) log
P (r|x)

P (r)
, (10)

and P (r|x) in turn is influenced by the quantizer properties,

which is the scaling parameter γ in this work, and by the

IA Πr. Thus, the MI for a given pair (γ,Πr) is denoted by

I(γ,Πr)(X;R). Consequently it is reasonable to assume that for

a given Eb/N0, there is a combination (Π∗
r , γ

∗) that maximizes

I(γ,Πr)(X;R):

(Π∗

r , γ
∗) = argmax

Πr,γ
I(γ,Πr)(X;R) (11)

In this work, (11) is optimized by first solving

Π∗

r(γ) = argmax
Πr

I(γ,Πr)(X;R), (12)

i.e. finding optimized Π∗
r(γ) for reasonable values of γ, and

then by selecting γ∗ as

γ∗ = argmax
γ

I(γ,Π∗

r
(γ))(X;R) and Π∗

r = Π∗

r(γ
∗). (13)

The problem (12) of finding an IA subject to some optimiza-

tion criterion is a combinatorial optimization problem, which

for example also appears in source-channel-coding using MSE

[10] or MinMax criteria [11]. The number of possible solutions

is determined by the number of bits Nr and given by (2Nr !).
Although the search space can be reduced a little, because

there are 2Nr equivalent solutions, an exhaustive search is

infeasible for Nr > 3. Therefore, following [12], simulated

annealing (SA) is adopted in this work to optimize (12). While

SA as a metaheuristic cannot guarantee finding a globally

optimal solution, our experiments showed satisfactory results

for several configurations.

For a fixed Eb/N0 = 1dB, Fig. 6(a) shows the MI before

memory channel I(X;R) as reference, and compares the MI

I(X;R) for optimized IA (”Opt IA“), fixed NBC IA, and

randomly selected IA (”RND IA“) as functions of γ. It can

be observed that in all cases there is a γ∗ that maximizes the

MI, and that NBC IA is only slightly worse than optimized

IA, while randomly selected IA shows significantly lower MI.

Similarly, Fig. 6(b) shows the best MI for the three different

IAs as function of Eb/N0. Again, optimized IA performs
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Fig. 6. Effect of scaling factor γ and IA on MI (Nr = 4, pe = 0.05, R = 1/3).

little better than NBC, whereas random IA is significantly

worse. The required optimal scaling factor γ∗ for optimized

IA and NBC IA is shown in Fig. 6(c), and compared to the

scaling factor required to optimize I(X;R): A clear difference

between the first and the latter is visible, where optimization

subject to I(X;R) requires a larger γ for the given system.

The results indicate that the IA has considerable impact

on the MI at memory channel output: Selecting an arbitrary,

random IA may result in a performance decrease, while NBC

IA is close to optimized IA. Practical reasons suggest the

use of NBC or an equivalent IA, like two’s complement

representation, over using optimized IAs, because otherwise

optimized IAs would have to be pre-computed and stored

for each possible channel condition. The scaling factor on

the other hand should be adjusted dynamically depending on

current Eb/N0. For the considered system, γ∗ can readily be

computed for the current Eb/N0 using a function of the form

log γ∗ = m · Eb/N0 + c, (14)

where the parameters m, c may be found by least squares

fitting. Fig. 6(c) illustrates that the fitted functions (”Fcn λ∗“)

provide a good approximation for the cases of NBC and

optimized IA.

2) Optimization of EXIT characteristic: As described in the

previous paragraph, the impact of Πr and γ can be qualified in

terms of the MI I(X;R) for a given Eb/N0. In the decoder, an

optimal scaling factor (and possibly an optimal IA, if further

improvement over NBC IA is desired) can then be selected

given an estimate of Eb/N0. The influence of the IA Πλ,

which is the IA used for the LLRs exchanged between the

constituent decoders, should however not be analyzed for a

fixed noise power σ2
λ: Keeping the decoder implementation

in mind, it is not reasonable to find optimized IAs for each

possible σ2
λ, because there is a wide range of possible σ2

λ

depending on the convergence of the current decoding process.

This would require precomputing and selecting optimized IAs

for a significant amount of possible values σ2
λ.

As an alternative we propose to select an IA, which is

fixed for all σ2
λ, based on its impact on the decoding process.

This impact is reflected by the shape of the function that

relates a priori information supplied to the decoder to the

extrinsic information it generates. We define the a priori MI

of a decoder as IA := I(X; ΛA), and the resulting MI of

the extrinsic values as IE(IA,Πλ) := I(X; ΛE), where the

remaining system parameters are kept fixed:

• IA is the MI of the quantized a priori values λA before

writing them into the buffer. If pe > 0, these values are

distorted by the memory channel, such that the input λA

of the constituent decoder actually has a decreased MI

0 ≤ I(X; ΛA) < I(X; ΛA) ≤ 1.

• IE(IA,Πλ) is the MI of the output of a constituent

decoder, given the a priori MI IA.

Based on these definitions the optimization problem

Π∗

λ = argmax
Πλ

min
IA

{IE(IA,Πλ)− IA|IA ≤ ∆} , (15)

where 0 < ∆ ≤ 1, formalizes the following performance

criterion: Find an IA Π∗

λ that maximizes the minimum increase

in MI IE(IA,Πλ) in the extrinsic values, compared to the

MI IA of the supplied a priori values, for each IA ≤ ∆. In

other words, optimizing (15) yields an EXIT chart, where the

minimum distance of the two decoder curves is maximized in

the range 0 . . .∆. We use SA to optimize (15).

The parameter ∆ controls the resulting decoding behaviour:

A large value, for example ∆ = 1, may shift the point

IE(IA,Πλ) = IA as far as possible towards (1, 1). This may

lead to a steeper BER curve, but higher decoding threshold.

On the other hand, a smaller ∆, for example ∆ = 0.9, leads

to a wider tunnel, meaning earlier convergence, but disregards

the upper part in the EXIT chart, resulting in a less steep BER

curve.

IV. SIMULATION RESULTS

In this section simulation results for EXIT charts and

BER are shown. The BER simulation follows the system

as shown in Fig. 1. All results are based on a binary

rate R = 1/3 Turbo code using parallel concatenation of

two UMTS/LTE compatible [1] recursive systematic encoders

G(D) =
[

1, 1+D+D3

1+D2+D3

]

. BPSK mapped symbols with gain

factor µ = 1 are then transmitted over an AWGN channel.

The scaling factor γ∗ is selected depending on the current

Eb/N0 using (14), with parameters (m, c) as (−0.09, 0.77),
(−0.09, 1.16) and (−0.08, 1.56) for pe = 0, pe = 0.01
and pe = 0.05, respectively. In all cases quantization of

the received values is done using Nr = 4 bit with two’s

complement representation. Two’s complement is equivalent

to NBC IA, which according to the results from Sec. III-B

is only slightly worse than optimized IA in terms of the

resulting MI I(X;R). For the LLRs λ a Nλ = 7 bit quantizer

is used, where dλ = 5 and fλ = 2. The Turbo decoder

uses the FT MAP as described in Sec. III-A based on the
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LogMAP algorithm with 8 iterations. The required LUTs are

precomputed assuming perfect knowledge of the parameters

pe, σ2 and σ2
λ. Figs. 7 and 8 compare the EXIT charts and

BER of a decoder based on the FT MAP to a conventional

MAP. For the FT MAP, three cases are considered: NBC IA,

and optimized IA with ∆ = 0.9 and ∆ = 0.995. Additionally,

results for a decoder with error-free buffer memory are shown

as a reference (”Ref“).

Looking at Fig. 7 it is obvious that the EXIT chart of

the conventional MAP decoder in case of erroneous buffer

memory (pe = 0.05) is strongly degraded: The early crossing

point of both curves indicates that the decoding process will

not converge at the given SNR. A significantly higher SNR

would be required for convergence. On the other hand, the

curves of the FT MAP based decoder using NBC IA do not

intersect at all, such that an improved BER can be expected.

The effect of using an IA based on optimizing (15) can

also be observed clearly: For ∆ = 0.9, the region IA > 0.9 is

disregarded during optimization, which leads to an intersection

at about 0.96, but also to a wider ”bottleneck“, which is

supposed to increase robustness of the decoder. On the other

hand, for ∆ = 0.995 the ”bottleneck“ is smaller in the region

IA < 0.94, but improved in the very upper part. This leads to

better performance for higher SNR and possibly an improved

error floor.

The BER curves in Fig. 8 confirm these conclusions.

Considering for example a BER working point of 10−4 and

pe = 0.05 (blue curves), the Turbo decoder based on the con-

ventional MAP algorithm shows a performance loss of about

7dB compared to the reference. The FT MAP based decoder

significantly improves the BER performance: A performance

gain of 3dB is reached by using NBC IA. The optimized

IA with ∆ = 0.995 is improved by another 0.4dB, while

the optimized IA with ∆ = 0.9 is degraded by about 1dB.

However, if the latter IA is used, a BER of 10−2 is already

reached at 2.4dB, while NBC IA and the IA optimized for

∆ = 0.995 require 2.8dB and 3.6db, respectively. Finally, it

can be observed that the FT MAP using NBC IA exhibits an

error floor, while there is a significantly lower floor in the

considered BER range for the optimized IAs. The same holds

for a smaller bit error probability of pe = 0.01 (red curves).

It can be concluded that selecting an optimized, fixed IA

Πλ with a suitable ∆ may outperform NBC IA, depending on

the BER requirements, at little implementation cost.
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Fig. 8. Comparison of BER performance after 8 iterations for FT MAP and
conventional MAP for pe = 0.01 and pe = 0.05, and reference (pe = 0).

V. CONCLUSIONS

The effect of unreliable buffer memory on Turbo decoding

has been discussed: While a decoder based on the conventional

MAP algorithm exhibits a strong performance degradation, the

proposed FT MAP can significantly reduce these additional

distortions, given a proper selection of quantizer and IA. For

the latter it has been observed that NBC or an equivalent IA

delivers good results for the considered system. But especially

in case of the LLR buffer, the IA can be further optimized

using the proposed EXIT chart based criterion to yield a

steeper BER curve or earlier decoding threshold.

Further analysis is required for the robustness of the FT

MAP regarding to the parameters σ2, pe, and σ2
λ. More

generally, different quantizer designs strongly influence the

performance and the degrees of freedom of the involved opti-

mization problems and useful upper bounds for these problems

are still unknown. Both problems might be considered for

future work.
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