
Multi Core Processing for Software Radio

Channel Decoder
Klaus Hueske, Jan Geldmacher, Jürgen Götze

AG DT, ET/IT, TU Dortmund

Email: klaus.hueske@tu-dortmund.de

Edmund Coersmeier

Nokia Research Center, Bochum

Email: edmund.coersmeier@nokia.com

Abstract— The growing number of transmission

standards and technologies leads to an increased in-

terest in software defined radios (SDRs). To provide

the required computing power for these SDRs, multi

processor architectures are considered as a realistic ap-

proach. To achieve an optimum speedup, the algo-

rithmic descriptions of the digital baseband processing

tasks have to be adequate for these architectures. In

this work two approaches for parallel Viterbi decoding

on a symmetric multi processor platform are presented,

which are based on segmentation of the code trellis in

state and time direction. The resulting speedup of these

approaches is evaluated on an ARM MPCore platform.

Index Terms—Viterbi decoder, symmetric multi pro-

cessor, MPCore, overlapping, software defined radio

I. INTRODUCTION

T
HE Viterbi Algorithm (VA) [1] is widely used

for decoding Forward Error Correction (FEC)

codes in digital transmission systems. Mainly used

as standard method for maximum-likelihood decod-

ing of convolutional channel codes, the algorithm is

also applicable to block codes or can be used as com-

ponent decoder for Turbo Codes [2].

Convolutional codes are utilized in nearly all current

transmission standards, like e.g. WLAN, 3G or DVB.

Digital radio baseband signal processing is mainly

based on ASIC (Application Specific Integrated Cir-

cuit) implementations, which enable fast and energy

efficient mobile devices. However, due to the grow-

ing number of transmission standards, ASIC based

devices tend to be to inflexible to serve all technolo-

gies. Driven by the advantages in processor technol-

ogy, pure software implementations of digital base-

band processing tasks became feasible. Besides the

increased flexibility regarding the transmission tech-

nologies and standards, the development and main-

tenance of these Software Defined Radios (SDR) are

less time consuming and less expensive compared to

hardware solutions [3].

A still challenging problem is to provide the high pro-

cessing power required for the SDR in an energy effi-

cient way. Increasing the clock rate of the processors

will lead to an intolerable power dissipation and en-

ergy consumption. Alternative approaches to increase

the processing power while keeping the energy con-

sumption low are mainly based on parallel signal pro-

cessing. Known concepts are SIMD (Single Instruc-

tion Multiple Data) architectures, vector processors

or multi processor architectures. The latter can be di-

vided into symmetric (SMP) and asymmetric (AMP)

architectures. While the AMPs, like e.g. TI’s OMAP

[4], have specialized cores for specific computation

tasks, the SMPs are usually composed of general pur-

pose processors.

Due to its high computational complexity, the Viterbi

decoder causes a significant processor load in an SDR

system (see Fig. 1) [5].

10%

80%

70%

60%

50%

40%

30%

20%

100 15050 200

Frequency Sync

Channel Decoding

Channel Estimation

Timing Sync

P
ro

ce
ss

o
r

L
o
ad

Time

Fig. 1. Processor load of a Digital Radio Mondiale (DRM)

receiver on a TI C6713 DSP.

Hence, the Viterbi decoder is often implemented as

an additional co-processor (e.g. TI C6416) or hard-

ware accelerator, while other base band processing

tasks (e.g. channel estimation) are completely mod-

eled in software.

Parallel implementations of the VA are well known

1

in VLSI design. Several specialized Viterbi proces-

sor designs were presented, e.g. the canonic cascade

Viterbi Decoder [6], the fully parallel bit-serial de-

coder [7] or a reconfigurable multi processor design

[8]. However, these processor designs are tailored to

the VA. Instead, when implementing the VA on a gen-

eral purpose SMP, the algorithmic description has to

be tailored to the used architecture. Especially the

granularity has to be considered, as permanent com-

munication and synchronization between the proces-

sors will degrade the speedup.

In previous work an alternative, optimization network

based channel decoder concept was presented [9].

Due to the algorithmic structure, no communication

or synchronization between the processors is required

during the decoding process. This results in an al-

most linear speedup on an SMP platform. However,

for larger constraint lengths of the convolutional code,

the decoding performance degraded compared to the

maximum likelihood Viterbi decoder. Therefore, con-

cepts for parallel implementations of the VA on an

SMP architecture are presented in this work. Two

different approaches are considered: The segmenta-

tion in state direction and in time direction. In the

first approach the trellis state metrics are computed

group-wise on the parallel processors in each decod-

ing step, while the latter will compute independent

overlapping trellis segments [10], [11]. The speedup

of the approaches is evaluated on the ARM MPCore

platform using four processors [12].

The paper is organized as follows: In Section II,

the main principles of Viterbi decoding will be pre-

sented. In Section III, the two parallelization ap-

proaches, time direction segmentation and state di-

rection segmentation, will be introduced. In section

IV we will focus on the implementation details and

the used processor platform, which is used for perfor-

mance evaluation in terms of speedup. Final conclu-

sions are drawn in Section V.

II. THE VITERBI DECODER

The Viterbi decoder [1] is an implementation of the

VA and features maximum likelihood decoding with

feasible computational complexity and easy process-

ing of reliability informations (“soft-decision decod-

ing”).

The Viterbi decoder operates on the trellis of the con-

volutional encoder. In the following we denote the

number of inputs of the encoder by k, the number of

outputs by n and the number of encoder memory ele-

ments by ν. The trellis represents the state transitions

of the encoder over time. It is a directed graph with

N = 2ν nodes (“states”) at every time step and 2k

edges (“state transitions”) leaving each node, where

each edge is labeled with an n-bit output symbol. Fig.

2 shows an example of a trellis for an encoder with

N = 22 = 4 states and code rate R = k/n = 1/2.

A single trellis segment is depicted on the left and a

trellis with five time steps is illustrated on the right

hand side. The encoder input at time t is denoted by

ut and the path according to an input sequence 10011
is plotted bold.

t

01

10

00

11

10

01

11

00
0

1

2

3

0

1

2

3

ut = 0

ut = 1

u0 = 1 u1 = 0 u2 = 0 u3 = 1 u4 = 1

Fig. 2. Example of a trellis segment (left) and a trellis path

(right) for a 4-state trellis and five time steps.

As each trellis path represents a valid code se-

quence, a received sequence can be soft-decision de-

coded by searching for the path with minimum eu-

clidean distance to the received sequence. For an

AWGN-channel this can be shown to be equal to

maximum likelihood decoding, i.e. maximizing the

probability P (v̂|r), where v̂ and r denote decoded

and received sequence, respectively. The probability

P (v̂|r) can be calculated as the sum of all individual

logarithmic symbol probabilities, which occur on the

according path:

P (v̂|r) =
∑

− log P (v̂t|rt), (1)

where v̂t and rt are decoded and received symbols at

time step t, respectively.

In terms of the VA the probability of a trellis path,

which ends at time t in a state p, is usually qualified by

its metric M
(p)
t . According to Eq. (1) the metric M

(p)
t

can be expressed as the sum of the branch metrics of

the path. We denote the branch metric at time t for a

transition from state p to state q by µ
(p,q)
t . Thus the

path metric at time (t + 1) can be calculated as

M
(q)
t+1 = M

(p)
t + µ

(p,q)
t , (2)

where we assume a transition from state p at time t
into state q at time (t + 1). The branch metric for

a transition from state p to state q, with an associ-

ated BPSK-modulated code symbol vt and a received

2

symbol rt can be calculated from the inner product as

µ
(p,q)
t =< rt,vt > .

However, normally multiple paths merge into a single

M
(p1)
t

M
(p2)
t

µ
(p1,q)
t

µ
(p2,q)
t

M
(q)
t+1

t

Fig. 3. Configuration of two paths merging into a single state.

state. Fig. 3 illustrates this situation with two paths

merging into the state q having the path metrics

M
(p1)
t + µ

(p1,q)
t and M

(p2)
t + µ

(p2,q)
t .

The key idea of the VA is that it is only necessary to

retain the path with the highest metric, which is called

the survivor. All other paths can be neglected. Thus

for every state and every received symbol the VA has

to calculate

M
(q)
t+1 = max

i

{

M
(pi)
t + µ

(pi,q)
t

}

, (3)

where the preceeding states of q are denoted by

pi. The maximum metric along with the associated

survivor-path are stored for each state q at time (t+1).
This metric accumulation and the selection of the sur-

vivor is known as the Add-Compare-Select (ACS) op-

eration. From Eq. (3) it is easy to see, that the VA

has a recursive structure with at first sight limited par-

allelization options, because the metrics at time step

(t + 1) are dependent on the metrics at time step t.
The actual decoding operation is realized by tracing

back the trellis path from the state with best metric

(best-state decoding) or from an arbitrary state (fixed-

state decoding) and returning the information symbol

at a certain depth. For best-state decoding this decod-

ing delay (depth) is usually chosen as D = 5ν steps

back from the current symbol, which is the number of

stages after which the maximum likelihood path has

merged with the traceback path with sufficient proba-

bility [2].

A decoding delay can be avoided if a coding scheme

with initialization and termination is employed. In

this case a certain bit pattern is periodically appended

to the encoded sequence to force the trellis path into

a known state. Thus a periodic traceback from a fixed

state can be realized.

The complexity of the Viterbi Decoder is mainly gov-

erned by two operations: The ACS operation required

for each state is computational intensive. The number

of states and with it the number of required ACS oper-

ations in turn depend exponentially on ν. The second

factor is the traceback operation, which makes heavy

use of memory access.

III. PARALLELIZATION APPROACHES

A. State Direction Segmentation

As shown in the previous section, the Viterbi de-

coding process is time recursive, i.e. all state metrics

in a decoding step t + 1 have to be computed from

the state metrics at step t. Thinking about a parallel

implementation, a straightforward approach is to dis-

tribute the computation of the state metrics Mt+1 at

time step t + 1 over all available processors, i.e. seg-

ment the computation in state direction. With P the

number of available processors, N/P states have to

be computed on each processor. Due to the recursive

structure of the VA, this approach requires synchro-

nization and an exchange of the computed metrics be-

tween the processors after each decoding step.

To reduce the synchronization effort, each processor

can compute b decoding steps before sharing the re-

sults with the other processors. This is realized by ex-

ploiting the dependencies in the trellis graph. The re-

sulting decoding scheme for two processors and N =
16 states is given in Fig. 4. In the first step the met-

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

t t+1 t+2 t+3

Fig. 4. Parallel decoding using two processors for a trellis with

N=16 states. Workload of the first processor.

rics M
(q)
t+1 for q = 0, 1, 2, 3, 8, 9, 10, 11 are computed

from the preceding metrics M
(q)
t with q = 0, ..., 7.

It can be seen from the trellis structure that the new

computed M
(q)
t+1 enable the computation of M

(q)
t+2 with

3

q = 0, 1, 4, 5, 8, 9, 12, 13. In the third step, the met-

rics M
(q)
t+3 with q = 0, 2, 4, 6, 8, 10, 12, 14 can be ob-

tained from the previous computed states. After this

step no more couples of preceding states are available

for further computations.

The example shows that the number of decoding steps

that can be performed independently on the parallel

processors is limited. The maximum number of de-

coding steps depends on the number of states, i.e.

the length of the encoder memory, and the number

of used processors. The limit is given as

b ≤ ν − log2 P. (4)

Furthermore, to achieve a regular segmentation of the

trellis states, b should be a power of 2.

B. Time Direction Segmentation

The state direction segmentation approach allows

an independent computation of the state metrics for b
decoding steps. However, in a block with l data bits,

still l/b synchronization points have to be inserted.

The resulting synchronization overhead can signifi-

cantly reduce the achievable speedup [13].

To reduce the synchronization effort, an algorithmic

description with increased granularity is desirable.

Here we suggest a segmentation of the code trellis in

time direction, i.e. a data block of length l is divided

into P segments and all segments are concurrently de-

coded on the available processors. With this approach

only one synchronization point per data block is re-

quired, i.e. the synchronization and communication

overhead is minimized.

However, the segmentation of a data block into sev-

eral parts will lead to an additional decoding error,

which is caused by the missing initialization and ter-

mination of the segments (see Section II). Without

this information, the initial and final state of the path

are unknown. As mentioned before, after several de-

coding steps all possible paths will merge into one

unique path, i.e. the additional error resulting from the

missing termination/initialization is significant only

in the beginning and end of each segment. To elim-

inate the additional decoding error, the block is di-

vided into overlapping segments, where the beginning

and end of each segment are discarded after decoding

and only the middle, unique part is kept for further

processing [10].

Corresponding to the decoding delay during trace-

back, all path have most likely merged after D = 5ν
decoding steps [11]. The relations are clarified in Fig.

5. The use of overlapping segments will introduce

State

Error

Decoding Step

Decoding Step

Decoding Step

State

Error

Decoding Step

Acquisition Truncation

TruncationAcquisition Unique Path

Unique Path

Processor 1

Processor 2

Fig. 5. Channel decoding using overlapping decoders.

computational overhead, as parts of the decoded seg-

ment are discarded. With a truncation and acquisition

length of D = 5ν each, the number of required de-

coding steps is increased by a factor

F =
P (l

P
+ 2D)

l
= 1 + 10ν

P

l
. (5)

IV. IMPLEMENTATION AND PERFORMANCE

EVALUATION

For evaluation the presented approaches were im-

plemented as ”C” program and the resulting speedup

was determined on an ARM MPCore SMP platform.

A. MPCore architecture

The ARM MPCore architecture is based on 32-bit

integer RISC ARM 11 cores. The evaluation plat-

form provides 4 cores, which are clocked at 200 MHz.

Each core can use 32 kB of dedicated level-1 cache

for data and 32 kB for instructions. A shared second

level cache of 1 MB, which runs at core frequency,

allows fast data exchange between the processors. A

schematic of the MPCore platform is given in Fig. 6

[12].

A linux based operating system with modified SMP

kernel is used for resource management and schedul-

ing.

B. Implementation

To enable parallel execution on the four avail-

able processors, the parallel parts of the algorithms

are modeled as threads using the pthreads library

4

CPU

L1 Memory

CPU

L1 Memory

CPU

L1 Memory

Interface

CPUTimer

Watchdog Interface

CPUTimer

Watchdog Interface

CPUTimer

Watchdog

CPU

L1 Memory

Interrupt Distributor

Snoop Control Unit (SCU)

Interface

CPUTimer

Watchdog

I and D

64 bit bus

IRQIRQIRQIRQ

Coherence

control bus

Fig. 6. ARM MPCore Architecture.

[14]. The management of the generated threads and

their assignment to the processors is organized by the

scheduler.

In case of state direction segmentation, a synchro-

nization point has to be inserted after b decod-

ing steps, which is modeled using the functions

pthread cond wait and pthread cond signal. These

functions allow to suspend the already finished

threads until the last thread completes its computa-

tions. The traceback routine is started after all states

of the data block have been computed.

For time direction segmentation only one synchro-

nization point is necessary. The incoming data block

is divided into P parts and each part is decoded as

an independent thread. The traceback is part of each

thread. After parallel decoding of all segments, the

inner parts of each decoded block are extracted and

reassembled to obtain the final decoded output se-

quence.

C. Performance

The performance of the presented approaches in

terms of speedup is evaluated for the following pa-

rameter set:

• Code Rate R = 1/2
• Block length l = 2500
• Number of states N = 29 = 512
• Steps before synchronization b = 4

The resulting speedup for the two decoder approaches

running on the ARM MPCore platform is depicted in

Fig. 7. For time direction segmentation we can find

a speedup with nearly linear shape if the number of

threads is ≤ 4. Increasing the number of threads

will reduce the achievable speedup, which can be ex-

plained by two effects: On the one hand the man-

agement overhead grows with increasing number of

threads while the available number of processors is

limited to 4. This confirms the common assumption

that the number of threads should correspond to the

0 2 4 6 8 10 12 14 16
0.5

1

1.5

2

2.5

3

3.5

Number of Threads

S
p

e
e

d
u

p

Segmentation in Time Direction

Segmentation in State Direction

Fig. 7. Speedup for the segmentation approaches using 1 to 16

threads.

number of processors to achieve maximum perfor-

mance [13]. On the other hand, the computational

overhead grows when assigning more threads, due to

the use of overlapping segments (see Eq. 5). With

the used parameter set and a number of 16 threads

the overhead factor yields F = 1.576. The resulting

speedup for 16 threads is about 2.

For state direction segmentation the speedup is close

to one for a number of threads ≤ 4 or even below for

a larger number of threads. This can be explained by

the high number of required synchronization points.

The forced synchronization results in idle times of

the processors, if the computations finish at differ-

ent times. Furthermore, threads have to be suspended

and started again, which results in a huge operating

system overhead. The required data exchange will

further reduce the performance, as access to the L2

cache is generally slower than access to the L1 cache.

With growing number of threads the number of com-

putations performed by each thread is reduced while

the amount of management overhead increases. This

results in a speedup less than one.

Comparing the two approaches, we see that time

direction segmentation scales quite well, while the

speedup of state direction segmentation is limited by

the high amount of synchronization points. On the

other hand the memory requirements of the overlap-

ping based approach are significantly higher com-

pared to the state direction segmentation, as one data

block is decoded by P complete Viterbi decoders,

which requires P times more memory for saving the

state metrics and trellis paths.

5

V. CONCLUSIONS

In this work we described two approaches for map-

ping the Viterbi algorithm on a symmetric multi pro-

cessor platform. The state direction segmentation ap-

proach is based on computing groups of states on the

parallel processors, while the time direction segmen-

tation approach decodes overlapping parts of the data

block. The achievable speedup was evaluated on the

ARM MPCore SMP architecture. While the time di-

rection segmentation approach offers a good scalabil-

ity, the speedup of the state direction segmentation

approach is limited by the large synchronization and

communication effort.

REFERENCES

[1] A. Viterbi, “Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm,” IEEE Trans-

actions on Information Theory, vol. 13, no. 2, pp. 260–269,

April 1967.

[2] Shu Lin and Daniel J. Costello Jr., Error Control Coding,

2. edition, Pearson Prentice Hall, 2004.

[3] J. Mitola, “The software radio architecture,” IEEE Commu-

nications Magazine, vol. 33, pp. 26 – 38, 1995.

[4] Texas Instruments, Technical Docmumentation -

www.ti.com.

[5] A. Kurpiers and V. Fischer, “Open-source implementation

of a digital radio mondiale (drm) receiver,” in 9th Inter-

national IEE Conference on HF Radio Systems and Tech-

niques, Bath, UK, 2003.

[6] Gennady Feygin and Patrick G. Gulak, “A multiprocessor

architecture for viterbi decoders with linear speedup,” IEEE

Transactions on Sginal Processing, vol. 41, pp. 2907–2917,

1993.

[7] Y.-N. Chang, H. Suzuki, and K. K. Parhi, “A 2mb/s 256-

state 10-mw rate-1/3 viterbi decoder,” IEEE Journal of

Solid-State Circuits, vol. 35, pp. 826–834, June 2000.

[8] Guichang Zhong and A.N. Willson, “An energy-efficient

reconfigurable viterbi decoder on a programmable multi-

processor,” in IEEE International Symposium on Circuits

and Systems (ISCAS), 2007.

[9] K. Hueske, J. Götze, and E. Coersmeier, “Improving the

performance of a recurrent neural network convolutional

decoder,” in 7th IEEE International Symposium on Sig-

nal Processing and Information Technology (ISSPIT 2007),

Cairo, Egypt, December 2007.

[10] K. Hueske, C. V. Sinn, and J. Götze, “Parallel block signal

processing in high speed wireless communication systems,”

in Proc. IEEE Int. Symp. on Wireless Communication Sys-

tems, Trondheim, Normway, October 2007.

[11] G. Fettweis and H. Meyr, “Feedforward architectures for

parallel viterbi decoding,” The Journal of VLSI Signal Pro-

cessing, vol. 3, no. 1-2, pp. 105–119, June 1991.

[12] ARM, Technical Docmumentation - www.arm.com.

[13] M.O. Tokhi, M. A. Hossain, and M. H. Shaheed, Paral-

lel Computing for Real-time Signal Processing and Control,

Springer Verlag, 2003.

[14] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx

Farell, Pthreads Programming. A POSIX Standard for Bet-

ter Multiprocessing, O’Reilly Media, 1996.

6

